1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
"""
This file contains a minimal set of tests for compliance with the extension
array interface test suite, and should contain no other tests.
The test suite for the full functionality of the array is located in
`pandas/tests/arrays/`.
 
The tests in this file are inherited from the BaseExtensionTests, and only
minimal tweaks should be applied to get the tests passing (by overwriting a
parent method).
 
Additional tests should either be added to one of the BaseExtensionTests
classes (if they are relevant for the extension interface for all dtypes), or
be added to the array-specific tests in `pandas/tests/arrays/`.
 
"""
import numpy as np
import pytest
 
from pandas.core.dtypes.common import is_extension_array_dtype
 
import pandas as pd
import pandas._testing as tm
from pandas.api.types import is_float_dtype
from pandas.core.arrays.floating import (
    Float32Dtype,
    Float64Dtype,
)
from pandas.tests.extension import base
 
 
def make_data():
    return (
        list(np.arange(0.1, 0.9, 0.1))
        + [pd.NA]
        + list(np.arange(1, 9.8, 0.1))
        + [pd.NA]
        + [9.9, 10.0]
    )
 
 
@pytest.fixture(params=[Float32Dtype, Float64Dtype])
def dtype(request):
    return request.param()
 
 
@pytest.fixture
def data(dtype):
    return pd.array(make_data(), dtype=dtype)
 
 
@pytest.fixture
def data_for_twos(dtype):
    return pd.array(np.ones(100) * 2, dtype=dtype)
 
 
@pytest.fixture
def data_missing(dtype):
    return pd.array([pd.NA, 0.1], dtype=dtype)
 
 
@pytest.fixture
def data_for_sorting(dtype):
    return pd.array([0.1, 0.2, 0.0], dtype=dtype)
 
 
@pytest.fixture
def data_missing_for_sorting(dtype):
    return pd.array([0.1, pd.NA, 0.0], dtype=dtype)
 
 
@pytest.fixture
def na_cmp():
    # we are pd.NA
    return lambda x, y: x is pd.NA and y is pd.NA
 
 
@pytest.fixture
def na_value():
    return pd.NA
 
 
@pytest.fixture
def data_for_grouping(dtype):
    b = 0.1
    a = 0.0
    c = 0.2
    na = pd.NA
    return pd.array([b, b, na, na, a, a, b, c], dtype=dtype)
 
 
class TestDtype(base.BaseDtypeTests):
    pass
 
 
class TestArithmeticOps(base.BaseArithmeticOpsTests):
    def check_opname(self, s, op_name, other, exc=None):
        # overwriting to indicate ops don't raise an error
        super().check_opname(s, op_name, other, exc=None)
 
    def _check_op(self, s, op, other, op_name, exc=NotImplementedError):
        if exc is None:
            sdtype = tm.get_dtype(s)
            if (
                hasattr(other, "dtype")
                and not is_extension_array_dtype(other.dtype)
                and is_float_dtype(other.dtype)
            ):
                # other is np.float64 and would therefore always result in
                # upcasting, so keeping other as same numpy_dtype
                other = other.astype(sdtype.numpy_dtype)
 
            result = op(s, other)
            expected = self._combine(s, other, op)
 
            # combine method result in 'biggest' (float64) dtype
            expected = expected.astype(sdtype)
 
            self.assert_equal(result, expected)
        else:
            with pytest.raises(exc):
                op(s, other)
 
    def _check_divmod_op(self, s, op, other, exc=None):
        super()._check_divmod_op(s, op, other, None)
 
 
class TestComparisonOps(base.BaseComparisonOpsTests):
    # TODO: share with IntegerArray?
    def _check_op(self, s, op, other, op_name, exc=NotImplementedError):
        if exc is None:
            result = op(s, other)
            # Override to do the astype to boolean
            expected = s.combine(other, op).astype("boolean")
            self.assert_series_equal(result, expected)
        else:
            with pytest.raises(exc):
                op(s, other)
 
    def check_opname(self, s, op_name, other, exc=None):
        super().check_opname(s, op_name, other, exc=None)
 
    def _compare_other(self, s, data, op, other):
        op_name = f"__{op.__name__}__"
        self.check_opname(s, op_name, other)
 
 
class TestInterface(base.BaseInterfaceTests):
    pass
 
 
class TestConstructors(base.BaseConstructorsTests):
    pass
 
 
class TestReshaping(base.BaseReshapingTests):
    pass
 
 
class TestGetitem(base.BaseGetitemTests):
    pass
 
 
class TestSetitem(base.BaseSetitemTests):
    pass
 
 
class TestIndex(base.BaseIndexTests):
    pass
 
 
class TestMissing(base.BaseMissingTests):
    pass
 
 
class TestMethods(base.BaseMethodsTests):
    _combine_le_expected_dtype = object  # TODO: can we make this boolean?
 
 
class TestCasting(base.BaseCastingTests):
    pass
 
 
class TestGroupby(base.BaseGroupbyTests):
    pass
 
 
class TestNumericReduce(base.BaseNumericReduceTests):
    def check_reduce(self, s, op_name, skipna):
        # overwrite to ensure pd.NA is tested instead of np.nan
        # https://github.com/pandas-dev/pandas/issues/30958
        if op_name == "count":
            result = getattr(s, op_name)()
            expected = getattr(s.dropna().astype(s.dtype.numpy_dtype), op_name)()
        else:
            result = getattr(s, op_name)(skipna=skipna)
            expected = getattr(s.dropna().astype(s.dtype.numpy_dtype), op_name)(
                skipna=skipna
            )
            if not skipna and s.isna().any():
                expected = pd.NA
        tm.assert_almost_equal(result, expected)
 
 
@pytest.mark.skip(reason="Tested in tests/reductions/test_reductions.py")
class TestBooleanReduce(base.BaseBooleanReduceTests):
    pass
 
 
class TestPrinting(base.BasePrintingTests):
    pass
 
 
class TestParsing(base.BaseParsingTests):
    pass
 
 
@pytest.mark.filterwarnings("ignore:overflow encountered in reduce:RuntimeWarning")
class Test2DCompat(base.Dim2CompatTests):
    pass
 
 
class TestAccumulation(base.BaseAccumulateTests):
    @pytest.mark.parametrize("skipna", [True, False])
    def test_accumulate_series_raises(self, data, all_numeric_accumulations, skipna):
        pass