1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import warnings
 
import numpy as np
import pytest
 
import pandas as pd
from pandas import (
    Categorical,
    DataFrame,
    Series,
    date_range,
)
import pandas._testing as tm
 
 
class TestCategoricalOpsWithFactor:
    def test_categories_none_comparisons(self):
        factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"], ordered=True)
        tm.assert_categorical_equal(factor, factor)
 
    def test_comparisons(self, factor):
        result = factor[factor == "a"]
        expected = factor[np.asarray(factor) == "a"]
        tm.assert_categorical_equal(result, expected)
 
        result = factor[factor != "a"]
        expected = factor[np.asarray(factor) != "a"]
        tm.assert_categorical_equal(result, expected)
 
        result = factor[factor < "c"]
        expected = factor[np.asarray(factor) < "c"]
        tm.assert_categorical_equal(result, expected)
 
        result = factor[factor > "a"]
        expected = factor[np.asarray(factor) > "a"]
        tm.assert_categorical_equal(result, expected)
 
        result = factor[factor >= "b"]
        expected = factor[np.asarray(factor) >= "b"]
        tm.assert_categorical_equal(result, expected)
 
        result = factor[factor <= "b"]
        expected = factor[np.asarray(factor) <= "b"]
        tm.assert_categorical_equal(result, expected)
 
        n = len(factor)
 
        other = factor[np.random.permutation(n)]
        result = factor == other
        expected = np.asarray(factor) == np.asarray(other)
        tm.assert_numpy_array_equal(result, expected)
 
        result = factor == "d"
        expected = np.zeros(len(factor), dtype=bool)
        tm.assert_numpy_array_equal(result, expected)
 
        # comparisons with categoricals
        cat_rev = Categorical(["a", "b", "c"], categories=["c", "b", "a"], ordered=True)
        cat_rev_base = Categorical(
            ["b", "b", "b"], categories=["c", "b", "a"], ordered=True
        )
        cat = Categorical(["a", "b", "c"], ordered=True)
        cat_base = Categorical(["b", "b", "b"], categories=cat.categories, ordered=True)
 
        # comparisons need to take categories ordering into account
        res_rev = cat_rev > cat_rev_base
        exp_rev = np.array([True, False, False])
        tm.assert_numpy_array_equal(res_rev, exp_rev)
 
        res_rev = cat_rev < cat_rev_base
        exp_rev = np.array([False, False, True])
        tm.assert_numpy_array_equal(res_rev, exp_rev)
 
        res = cat > cat_base
        exp = np.array([False, False, True])
        tm.assert_numpy_array_equal(res, exp)
 
        # Only categories with same categories can be compared
        msg = "Categoricals can only be compared if 'categories' are the same"
        with pytest.raises(TypeError, match=msg):
            cat > cat_rev
 
        cat_rev_base2 = Categorical(["b", "b", "b"], categories=["c", "b", "a", "d"])
 
        with pytest.raises(TypeError, match=msg):
            cat_rev > cat_rev_base2
 
        # Only categories with same ordering information can be compared
        cat_unorderd = cat.set_ordered(False)
        assert not (cat > cat).any()
 
        with pytest.raises(TypeError, match=msg):
            cat > cat_unorderd
 
        # comparison (in both directions) with Series will raise
        s = Series(["b", "b", "b"])
        msg = (
            "Cannot compare a Categorical for op __gt__ with type "
            r"<class 'numpy\.ndarray'>"
        )
        with pytest.raises(TypeError, match=msg):
            cat > s
        with pytest.raises(TypeError, match=msg):
            cat_rev > s
        with pytest.raises(TypeError, match=msg):
            s < cat
        with pytest.raises(TypeError, match=msg):
            s < cat_rev
 
        # comparison with numpy.array will raise in both direction, but only on
        # newer numpy versions
        a = np.array(["b", "b", "b"])
        with pytest.raises(TypeError, match=msg):
            cat > a
        with pytest.raises(TypeError, match=msg):
            cat_rev > a
 
        # Make sure that unequal comparison take the categories order in
        # account
        cat_rev = Categorical(list("abc"), categories=list("cba"), ordered=True)
        exp = np.array([True, False, False])
        res = cat_rev > "b"
        tm.assert_numpy_array_equal(res, exp)
 
        # check that zero-dim array gets unboxed
        res = cat_rev > np.array("b")
        tm.assert_numpy_array_equal(res, exp)
 
 
class TestCategoricalOps:
    def test_compare_frame(self):
        # GH#24282 check that Categorical.__cmp__(DataFrame) defers to frame
        data = ["a", "b", 2, "a"]
        cat = Categorical(data)
 
        df = DataFrame(cat)
 
        result = cat == df.T
        expected = DataFrame([[True, True, True, True]])
        tm.assert_frame_equal(result, expected)
 
        result = cat[::-1] != df.T
        expected = DataFrame([[False, True, True, False]])
        tm.assert_frame_equal(result, expected)
 
    def test_compare_frame_raises(self, comparison_op):
        # alignment raises unless we transpose
        op = comparison_op
        cat = Categorical(["a", "b", 2, "a"])
        df = DataFrame(cat)
        msg = "Unable to coerce to Series, length must be 1: given 4"
        with pytest.raises(ValueError, match=msg):
            op(cat, df)
 
    def test_datetime_categorical_comparison(self):
        dt_cat = Categorical(date_range("2014-01-01", periods=3), ordered=True)
        tm.assert_numpy_array_equal(dt_cat > dt_cat[0], np.array([False, True, True]))
        tm.assert_numpy_array_equal(dt_cat[0] < dt_cat, np.array([False, True, True]))
 
    def test_reflected_comparison_with_scalars(self):
        # GH8658
        cat = Categorical([1, 2, 3], ordered=True)
        tm.assert_numpy_array_equal(cat > cat[0], np.array([False, True, True]))
        tm.assert_numpy_array_equal(cat[0] < cat, np.array([False, True, True]))
 
    def test_comparison_with_unknown_scalars(self):
        # https://github.com/pandas-dev/pandas/issues/9836#issuecomment-92123057
        # and following comparisons with scalars not in categories should raise
        # for unequal comps, but not for equal/not equal
        cat = Categorical([1, 2, 3], ordered=True)
 
        msg = "Invalid comparison between dtype=category and int"
        with pytest.raises(TypeError, match=msg):
            cat < 4
        with pytest.raises(TypeError, match=msg):
            cat > 4
        with pytest.raises(TypeError, match=msg):
            4 < cat
        with pytest.raises(TypeError, match=msg):
            4 > cat
 
        tm.assert_numpy_array_equal(cat == 4, np.array([False, False, False]))
        tm.assert_numpy_array_equal(cat != 4, np.array([True, True, True]))
 
    def test_comparison_with_tuple(self):
        cat = Categorical(np.array(["foo", (0, 1), 3, (0, 1)], dtype=object))
 
        result = cat == "foo"
        expected = np.array([True, False, False, False], dtype=bool)
        tm.assert_numpy_array_equal(result, expected)
 
        result = cat == (0, 1)
        expected = np.array([False, True, False, True], dtype=bool)
        tm.assert_numpy_array_equal(result, expected)
 
        result = cat != (0, 1)
        tm.assert_numpy_array_equal(result, ~expected)
 
    def test_comparison_of_ordered_categorical_with_nan_to_scalar(
        self, compare_operators_no_eq_ne
    ):
        # https://github.com/pandas-dev/pandas/issues/26504
        # BUG: fix ordered categorical comparison with missing values (#26504 )
        # and following comparisons with scalars in categories with missing
        # values should be evaluated as False
 
        cat = Categorical([1, 2, 3, None], categories=[1, 2, 3], ordered=True)
        scalar = 2
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", RuntimeWarning)
            expected = getattr(np.array(cat), compare_operators_no_eq_ne)(scalar)
        actual = getattr(cat, compare_operators_no_eq_ne)(scalar)
        tm.assert_numpy_array_equal(actual, expected)
 
    def test_comparison_of_ordered_categorical_with_nan_to_listlike(
        self, compare_operators_no_eq_ne
    ):
        # https://github.com/pandas-dev/pandas/issues/26504
        # and following comparisons of missing values in ordered Categorical
        # with listlike should be evaluated as False
 
        cat = Categorical([1, 2, 3, None], categories=[1, 2, 3], ordered=True)
        other = Categorical([2, 2, 2, 2], categories=[1, 2, 3], ordered=True)
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", RuntimeWarning)
            expected = getattr(np.array(cat), compare_operators_no_eq_ne)(2)
        actual = getattr(cat, compare_operators_no_eq_ne)(other)
        tm.assert_numpy_array_equal(actual, expected)
 
    @pytest.mark.parametrize(
        "data,reverse,base",
        [(list("abc"), list("cba"), list("bbb")), ([1, 2, 3], [3, 2, 1], [2, 2, 2])],
    )
    def test_comparisons(self, data, reverse, base):
        cat_rev = Series(Categorical(data, categories=reverse, ordered=True))
        cat_rev_base = Series(Categorical(base, categories=reverse, ordered=True))
        cat = Series(Categorical(data, ordered=True))
        cat_base = Series(
            Categorical(base, categories=cat.cat.categories, ordered=True)
        )
        s = Series(base)
        a = np.array(base)
 
        # comparisons need to take categories ordering into account
        res_rev = cat_rev > cat_rev_base
        exp_rev = Series([True, False, False])
        tm.assert_series_equal(res_rev, exp_rev)
 
        res_rev = cat_rev < cat_rev_base
        exp_rev = Series([False, False, True])
        tm.assert_series_equal(res_rev, exp_rev)
 
        res = cat > cat_base
        exp = Series([False, False, True])
        tm.assert_series_equal(res, exp)
 
        scalar = base[1]
        res = cat > scalar
        exp = Series([False, False, True])
        exp2 = cat.values > scalar
        tm.assert_series_equal(res, exp)
        tm.assert_numpy_array_equal(res.values, exp2)
        res_rev = cat_rev > scalar
        exp_rev = Series([True, False, False])
        exp_rev2 = cat_rev.values > scalar
        tm.assert_series_equal(res_rev, exp_rev)
        tm.assert_numpy_array_equal(res_rev.values, exp_rev2)
 
        # Only categories with same categories can be compared
        msg = "Categoricals can only be compared if 'categories' are the same"
        with pytest.raises(TypeError, match=msg):
            cat > cat_rev
 
        # categorical cannot be compared to Series or numpy array, and also
        # not the other way around
        msg = (
            "Cannot compare a Categorical for op __gt__ with type "
            r"<class 'numpy\.ndarray'>"
        )
        with pytest.raises(TypeError, match=msg):
            cat > s
        with pytest.raises(TypeError, match=msg):
            cat_rev > s
        with pytest.raises(TypeError, match=msg):
            cat > a
        with pytest.raises(TypeError, match=msg):
            cat_rev > a
 
        with pytest.raises(TypeError, match=msg):
            s < cat
        with pytest.raises(TypeError, match=msg):
            s < cat_rev
 
        with pytest.raises(TypeError, match=msg):
            a < cat
        with pytest.raises(TypeError, match=msg):
            a < cat_rev
 
    @pytest.mark.parametrize(
        "ctor",
        [
            lambda *args, **kwargs: Categorical(*args, **kwargs),
            lambda *args, **kwargs: Series(Categorical(*args, **kwargs)),
        ],
    )
    def test_unordered_different_order_equal(self, ctor):
        # https://github.com/pandas-dev/pandas/issues/16014
        c1 = ctor(["a", "b"], categories=["a", "b"], ordered=False)
        c2 = ctor(["a", "b"], categories=["b", "a"], ordered=False)
        assert (c1 == c2).all()
 
        c1 = ctor(["a", "b"], categories=["a", "b"], ordered=False)
        c2 = ctor(["b", "a"], categories=["b", "a"], ordered=False)
        assert (c1 != c2).all()
 
        c1 = ctor(["a", "a"], categories=["a", "b"], ordered=False)
        c2 = ctor(["b", "b"], categories=["b", "a"], ordered=False)
        assert (c1 != c2).all()
 
        c1 = ctor(["a", "a"], categories=["a", "b"], ordered=False)
        c2 = ctor(["a", "b"], categories=["b", "a"], ordered=False)
        result = c1 == c2
        tm.assert_numpy_array_equal(np.array(result), np.array([True, False]))
 
    def test_unordered_different_categories_raises(self):
        c1 = Categorical(["a", "b"], categories=["a", "b"], ordered=False)
        c2 = Categorical(["a", "c"], categories=["c", "a"], ordered=False)
 
        with pytest.raises(TypeError, match=("Categoricals can only be compared")):
            c1 == c2
 
    def test_compare_different_lengths(self):
        c1 = Categorical([], categories=["a", "b"])
        c2 = Categorical([], categories=["a"])
 
        msg = "Categoricals can only be compared if 'categories' are the same."
        with pytest.raises(TypeError, match=msg):
            c1 == c2
 
    def test_compare_unordered_different_order(self):
        # https://github.com/pandas-dev/pandas/issues/16603#issuecomment-
        # 349290078
        a = Categorical(["a"], categories=["a", "b"])
        b = Categorical(["b"], categories=["b", "a"])
        assert not a.equals(b)
 
    def test_numeric_like_ops(self):
        df = DataFrame({"value": np.random.randint(0, 10000, 100)})
        labels = [f"{i} - {i + 499}" for i in range(0, 10000, 500)]
        cat_labels = Categorical(labels, labels)
 
        df = df.sort_values(by=["value"], ascending=True)
        df["value_group"] = pd.cut(
            df.value, range(0, 10500, 500), right=False, labels=cat_labels
        )
 
        # numeric ops should not succeed
        for op, str_rep in [
            ("__add__", r"\+"),
            ("__sub__", "-"),
            ("__mul__", r"\*"),
            ("__truediv__", "/"),
        ]:
            msg = f"Series cannot perform the operation {str_rep}|unsupported operand"
            with pytest.raises(TypeError, match=msg):
                getattr(df, op)(df)
 
        # reduction ops should not succeed (unless specifically defined, e.g.
        # min/max)
        s = df["value_group"]
        for op in ["kurt", "skew", "var", "std", "mean", "sum", "median"]:
            msg = f"does not support reduction '{op}'"
            with pytest.raises(TypeError, match=msg):
                getattr(s, op)(numeric_only=False)
 
    def test_numeric_like_ops_series(self):
        # numpy ops
        s = Series(Categorical([1, 2, 3, 4]))
        with pytest.raises(TypeError, match="does not support reduction 'sum'"):
            np.sum(s)
 
    @pytest.mark.parametrize(
        "op, str_rep",
        [
            ("__add__", r"\+"),
            ("__sub__", "-"),
            ("__mul__", r"\*"),
            ("__truediv__", "/"),
        ],
    )
    def test_numeric_like_ops_series_arith(self, op, str_rep):
        # numeric ops on a Series
        s = Series(Categorical([1, 2, 3, 4]))
        msg = f"Series cannot perform the operation {str_rep}|unsupported operand"
        with pytest.raises(TypeError, match=msg):
            getattr(s, op)(2)
 
    def test_numeric_like_ops_series_invalid(self):
        # invalid ufunc
        s = Series(Categorical([1, 2, 3, 4]))
        msg = "Object with dtype category cannot perform the numpy op log"
        with pytest.raises(TypeError, match=msg):
            np.log(s)