1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
# cython: boundscheck=False, wraparound=False, cdivision=True
 
from libc.math cimport (
    round,
    signbit,
    sqrt,
)
from libcpp.deque cimport deque
 
from pandas._libs.algos cimport TiebreakEnumType
 
import numpy as np
 
cimport numpy as cnp
from numpy cimport (
    float32_t,
    float64_t,
    int64_t,
    ndarray,
)
 
cnp.import_array()
 
import cython
 
from pandas._libs.algos import is_monotonic
 
 
cdef extern from "../src/skiplist.h":
    ctypedef struct node_t:
        node_t **next
        int *width
        double value
        int is_nil
        int levels
        int ref_count
 
    ctypedef struct skiplist_t:
        node_t *head
        node_t **tmp_chain
        int *tmp_steps
        int size
        int maxlevels
 
    skiplist_t* skiplist_init(int) nogil
    void skiplist_destroy(skiplist_t*) nogil
    double skiplist_get(skiplist_t*, int, int*) nogil
    int skiplist_insert(skiplist_t*, double) nogil
    int skiplist_remove(skiplist_t*, double) nogil
    int skiplist_rank(skiplist_t*, double) nogil
    int skiplist_min_rank(skiplist_t*, double) nogil
 
cdef:
    float32_t MINfloat32 = np.NINF
    float64_t MINfloat64 = np.NINF
 
    float32_t MAXfloat32 = np.inf
    float64_t MAXfloat64 = np.inf
 
    float64_t NaN = <float64_t>np.NaN
 
cdef bint is_monotonic_increasing_start_end_bounds(
    ndarray[int64_t, ndim=1] start, ndarray[int64_t, ndim=1] end
):
    return is_monotonic(start, False)[0] and is_monotonic(end, False)[0]
 
# ----------------------------------------------------------------------
# Rolling sum
 
 
cdef float64_t calc_sum(int64_t minp, int64_t nobs, float64_t sum_x,
                        int64_t num_consecutive_same_value, float64_t prev_value
                        ) nogil:
    cdef:
        float64_t result
 
    if nobs == 0 == minp:
        result = 0
    elif nobs >= minp:
        if num_consecutive_same_value >= nobs:
            result = prev_value * nobs
        else:
            result = sum_x
    else:
        result = NaN
 
    return result
 
 
cdef void add_sum(float64_t val, int64_t *nobs, float64_t *sum_x,
                  float64_t *compensation, int64_t *num_consecutive_same_value,
                  float64_t *prev_value) nogil:
    """ add a value from the sum calc using Kahan summation """
 
    cdef:
        float64_t y, t
 
    # Not NaN
    if val == val:
        nobs[0] = nobs[0] + 1
        y = val - compensation[0]
        t = sum_x[0] + y
        compensation[0] = t - sum_x[0] - y
        sum_x[0] = t
 
        # GH#42064, record num of same values to remove floating point artifacts
        if val == prev_value[0]:
            num_consecutive_same_value[0] += 1
        else:
            # reset to 1 (include current value itself)
            num_consecutive_same_value[0] = 1
        prev_value[0] = val
 
 
cdef void remove_sum(float64_t val, int64_t *nobs, float64_t *sum_x,
                     float64_t *compensation) nogil:
    """ remove a value from the sum calc using Kahan summation """
 
    cdef:
        float64_t y, t
 
    # Not NaN
    if val == val:
        nobs[0] = nobs[0] - 1
        y = - val - compensation[0]
        t = sum_x[0] + y
        compensation[0] = t - sum_x[0] - y
        sum_x[0] = t
 
 
def roll_sum(const float64_t[:] values, ndarray[int64_t] start,
             ndarray[int64_t] end, int64_t minp) -> np.ndarray:
    cdef:
        Py_ssize_t i, j
        float64_t sum_x, compensation_add, compensation_remove, prev_value
        int64_t s, e, num_consecutive_same_value
        int64_t nobs = 0, N = len(start)
        ndarray[float64_t] output
        bint is_monotonic_increasing_bounds
 
    is_monotonic_increasing_bounds = is_monotonic_increasing_start_end_bounds(
        start, end
    )
    output = np.empty(N, dtype=np.float64)
 
    with nogil:
 
        for i in range(0, N):
            s = start[i]
            e = end[i]
 
            if i == 0 or not is_monotonic_increasing_bounds or s >= end[i - 1]:
 
                # setup
                prev_value = values[s]
                num_consecutive_same_value = 0
                sum_x = compensation_add = compensation_remove = 0
                nobs = 0
                for j in range(s, e):
                    add_sum(values[j], &nobs, &sum_x, &compensation_add,
                            &num_consecutive_same_value, &prev_value)
 
            else:
 
                # calculate deletes
                for j in range(start[i - 1], s):
                    remove_sum(values[j], &nobs, &sum_x, &compensation_remove)
 
                # calculate adds
                for j in range(end[i - 1], e):
                    add_sum(values[j], &nobs, &sum_x, &compensation_add,
                            &num_consecutive_same_value, &prev_value)
 
            output[i] = calc_sum(
                minp, nobs, sum_x, num_consecutive_same_value, prev_value
            )
 
            if not is_monotonic_increasing_bounds:
                nobs = 0
                sum_x = 0.0
                compensation_remove = 0.0
 
    return output
 
 
# ----------------------------------------------------------------------
# Rolling mean
 
 
cdef float64_t calc_mean(int64_t minp, Py_ssize_t nobs, Py_ssize_t neg_ct,
                         float64_t sum_x, int64_t num_consecutive_same_value,
                         float64_t prev_value) nogil:
    cdef:
        float64_t result
 
    if nobs >= minp and nobs > 0:
        result = sum_x / <float64_t>nobs
        if num_consecutive_same_value >= nobs:
            result = prev_value
        elif neg_ct == 0 and result < 0:
            # all positive
            result = 0
        elif neg_ct == nobs and result > 0:
            # all negative
            result = 0
        else:
            pass
    else:
        result = NaN
    return result
 
 
cdef void add_mean(
    float64_t val,
    Py_ssize_t *nobs,
    float64_t *sum_x,
    Py_ssize_t *neg_ct,
    float64_t *compensation,
    int64_t *num_consecutive_same_value,
    float64_t *prev_value
) nogil:
    """ add a value from the mean calc using Kahan summation """
    cdef:
        float64_t y, t
 
    # Not NaN
    if val == val:
        nobs[0] = nobs[0] + 1
        y = val - compensation[0]
        t = sum_x[0] + y
        compensation[0] = t - sum_x[0] - y
        sum_x[0] = t
        if signbit(val):
            neg_ct[0] = neg_ct[0] + 1
 
        # GH#42064, record num of same values to remove floating point artifacts
        if val == prev_value[0]:
            num_consecutive_same_value[0] += 1
        else:
            # reset to 1 (include current value itself)
            num_consecutive_same_value[0] = 1
        prev_value[0] = val
 
 
cdef void remove_mean(float64_t val, Py_ssize_t *nobs, float64_t *sum_x,
                      Py_ssize_t *neg_ct, float64_t *compensation) nogil:
    """ remove a value from the mean calc using Kahan summation """
    cdef:
        float64_t y, t
 
    if val == val:
        nobs[0] = nobs[0] - 1
        y = - val - compensation[0]
        t = sum_x[0] + y
        compensation[0] = t - sum_x[0] - y
        sum_x[0] = t
        if signbit(val):
            neg_ct[0] = neg_ct[0] - 1
 
 
def roll_mean(const float64_t[:] values, ndarray[int64_t] start,
              ndarray[int64_t] end, int64_t minp) -> np.ndarray:
    cdef:
        float64_t val, compensation_add, compensation_remove, sum_x, prev_value
        int64_t s, e, num_consecutive_same_value
        Py_ssize_t nobs, i, j, neg_ct, N = len(start)
        ndarray[float64_t] output
        bint is_monotonic_increasing_bounds
 
    is_monotonic_increasing_bounds = is_monotonic_increasing_start_end_bounds(
        start, end
    )
    output = np.empty(N, dtype=np.float64)
 
    with nogil:
 
        for i in range(0, N):
            s = start[i]
            e = end[i]
 
            if i == 0 or not is_monotonic_increasing_bounds or s >= end[i - 1]:
 
                # setup
                compensation_add = compensation_remove = sum_x = 0
                nobs = neg_ct = 0
                prev_value = values[s]
                num_consecutive_same_value = 0
                for j in range(s, e):
                    val = values[j]
                    add_mean(val, &nobs, &sum_x, &neg_ct, &compensation_add,
                             &num_consecutive_same_value, &prev_value)
 
            else:
 
                # calculate deletes
                for j in range(start[i - 1], s):
                    val = values[j]
                    remove_mean(val, &nobs, &sum_x, &neg_ct, &compensation_remove)
 
                # calculate adds
                for j in range(end[i - 1], e):
                    val = values[j]
                    add_mean(val, &nobs, &sum_x, &neg_ct, &compensation_add,
                             &num_consecutive_same_value, &prev_value)
 
            output[i] = calc_mean(
                minp, nobs, neg_ct, sum_x, num_consecutive_same_value, prev_value
            )
 
            if not is_monotonic_increasing_bounds:
                nobs = 0
                neg_ct = 0
                sum_x = 0.0
                compensation_remove = 0.0
    return output
 
# ----------------------------------------------------------------------
# Rolling variance
 
 
cdef float64_t calc_var(
    int64_t minp,
    int ddof,
    float64_t nobs,
    float64_t ssqdm_x,
    int64_t num_consecutive_same_value
) nogil:
    cdef:
        float64_t result
 
    # Variance is unchanged if no observation is added or removed
    if (nobs >= minp) and (nobs > ddof):
 
        # pathological case & repeatedly same values case
        if nobs == 1 or num_consecutive_same_value >= nobs:
            result = 0
        else:
            result = ssqdm_x / (nobs - <float64_t>ddof)
    else:
        result = NaN
 
    return result
 
 
cdef void add_var(
    float64_t val,
    float64_t *nobs,
    float64_t *mean_x,
    float64_t *ssqdm_x,
    float64_t *compensation,
    int64_t *num_consecutive_same_value,
    float64_t *prev_value,
) nogil:
    """ add a value from the var calc """
    cdef:
        float64_t delta, prev_mean, y, t
 
    # GH#21813, if msvc 2017 bug is resolved, we should be OK with != instead of `isnan`
    if val != val:
        return
 
    nobs[0] = nobs[0] + 1
 
    # GH#42064, record num of same values to remove floating point artifacts
    if val == prev_value[0]:
        num_consecutive_same_value[0] += 1
    else:
        # reset to 1 (include current value itself)
        num_consecutive_same_value[0] = 1
    prev_value[0] = val
 
    # Welford's method for the online variance-calculation
    # using Kahan summation
    # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
    prev_mean = mean_x[0] - compensation[0]
    y = val - compensation[0]
    t = y - mean_x[0]
    compensation[0] = t + mean_x[0] - y
    delta = t
    if nobs[0]:
        mean_x[0] = mean_x[0] + delta / nobs[0]
    else:
        mean_x[0] = 0
    ssqdm_x[0] = ssqdm_x[0] + (val - prev_mean) * (val - mean_x[0])
 
 
cdef void remove_var(
    float64_t val,
    float64_t *nobs,
    float64_t *mean_x,
    float64_t *ssqdm_x,
    float64_t *compensation
) nogil:
    """ remove a value from the var calc """
    cdef:
        float64_t delta, prev_mean, y, t
    if val == val:
        nobs[0] = nobs[0] - 1
        if nobs[0]:
            # Welford's method for the online variance-calculation
            # using Kahan summation
            # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
            prev_mean = mean_x[0] - compensation[0]
            y = val - compensation[0]
            t = y - mean_x[0]
            compensation[0] = t + mean_x[0] - y
            delta = t
            mean_x[0] = mean_x[0] - delta / nobs[0]
            ssqdm_x[0] = ssqdm_x[0] - (val - prev_mean) * (val - mean_x[0])
        else:
            mean_x[0] = 0
            ssqdm_x[0] = 0
 
 
def roll_var(const float64_t[:] values, ndarray[int64_t] start,
             ndarray[int64_t] end, int64_t minp, int ddof=1) -> np.ndarray:
    """
    Numerically stable implementation using Welford's method.
    """
    cdef:
        float64_t mean_x, ssqdm_x, nobs, compensation_add,
        float64_t compensation_remove, prev_value
        int64_t s, e, num_consecutive_same_value
        Py_ssize_t i, j, N = len(start)
        ndarray[float64_t] output
        bint is_monotonic_increasing_bounds
 
    minp = max(minp, 1)
    is_monotonic_increasing_bounds = is_monotonic_increasing_start_end_bounds(
        start, end
    )
    output = np.empty(N, dtype=np.float64)
 
    with nogil:
 
        for i in range(0, N):
 
            s = start[i]
            e = end[i]
 
            # Over the first window, observations can only be added
            # never removed
            if i == 0 or not is_monotonic_increasing_bounds or s >= end[i - 1]:
 
                prev_value = values[s]
                num_consecutive_same_value = 0
 
                mean_x = ssqdm_x = nobs = compensation_add = compensation_remove = 0
                for j in range(s, e):
                    add_var(values[j], &nobs, &mean_x, &ssqdm_x, &compensation_add,
                            &num_consecutive_same_value, &prev_value)
 
            else:
 
                # After the first window, observations can both be added
                # and removed
 
                # calculate deletes
                for j in range(start[i - 1], s):
                    remove_var(values[j], &nobs, &mean_x, &ssqdm_x,
                               &compensation_remove)
 
                # calculate adds
                for j in range(end[i - 1], e):
                    add_var(values[j], &nobs, &mean_x, &ssqdm_x, &compensation_add,
                            &num_consecutive_same_value, &prev_value)
 
            output[i] = calc_var(minp, ddof, nobs, ssqdm_x, num_consecutive_same_value)
 
            if not is_monotonic_increasing_bounds:
                nobs = 0.0
                mean_x = 0.0
                ssqdm_x = 0.0
                compensation_remove = 0.0
 
    return output
 
# ----------------------------------------------------------------------
# Rolling skewness
 
 
cdef float64_t calc_skew(int64_t minp, int64_t nobs,
                         float64_t x, float64_t xx, float64_t xxx,
                         int64_t num_consecutive_same_value
                         ) nogil:
    cdef:
        float64_t result, dnobs
        float64_t A, B, C, R
 
    if nobs >= minp:
        dnobs = <float64_t>nobs
        A = x / dnobs
        B = xx / dnobs - A * A
        C = xxx / dnobs - A * A * A - 3 * A * B
 
        if nobs < 3:
            result = NaN
        # GH 42064 46431
        # uniform case, force result to be 0
        elif num_consecutive_same_value >= nobs:
            result = 0.0
        # #18044: with uniform distribution, floating issue will
        #         cause B != 0. and cause the result is a very
        #         large number.
        #
        #         in core/nanops.py nanskew/nankurt call the function
        #         _zero_out_fperr(m2) to fix floating error.
        #         if the variance is less than 1e-14, it could be
        #         treat as zero, here we follow the original
        #         skew/kurt behaviour to check B <= 1e-14
        elif B <= 1e-14:
            result = NaN
        else:
            R = sqrt(B)
            result = ((sqrt(dnobs * (dnobs - 1.)) * C) /
                      ((dnobs - 2) * R * R * R))
    else:
        result = NaN
 
    return result
 
 
cdef void add_skew(float64_t val, int64_t *nobs,
                   float64_t *x, float64_t *xx,
                   float64_t *xxx,
                   float64_t *compensation_x,
                   float64_t *compensation_xx,
                   float64_t *compensation_xxx,
                   int64_t *num_consecutive_same_value,
                   float64_t *prev_value,
                   ) nogil:
    """ add a value from the skew calc """
    cdef:
        float64_t y, t
 
    # Not NaN
    if val == val:
        nobs[0] = nobs[0] + 1
 
        y = val - compensation_x[0]
        t = x[0] + y
        compensation_x[0] = t - x[0] - y
        x[0] = t
        y = val * val - compensation_xx[0]
        t = xx[0] + y
        compensation_xx[0] = t - xx[0] - y
        xx[0] = t
        y = val * val * val - compensation_xxx[0]
        t = xxx[0] + y
        compensation_xxx[0] = t - xxx[0] - y
        xxx[0] = t
 
        # GH#42064, record num of same values to remove floating point artifacts
        if val == prev_value[0]:
            num_consecutive_same_value[0] += 1
        else:
            # reset to 1 (include current value itself)
            num_consecutive_same_value[0] = 1
        prev_value[0] = val
 
 
cdef void remove_skew(float64_t val, int64_t *nobs,
                      float64_t *x, float64_t *xx,
                      float64_t *xxx,
                      float64_t *compensation_x,
                      float64_t *compensation_xx,
                      float64_t *compensation_xxx) nogil:
    """ remove a value from the skew calc """
    cdef:
        float64_t y, t
 
    # Not NaN
    if val == val:
        nobs[0] = nobs[0] - 1
 
        y = - val - compensation_x[0]
        t = x[0] + y
        compensation_x[0] = t - x[0] - y
        x[0] = t
        y = - val * val - compensation_xx[0]
        t = xx[0] + y
        compensation_xx[0] = t - xx[0] - y
        xx[0] = t
        y = - val * val * val - compensation_xxx[0]
        t = xxx[0] + y
        compensation_xxx[0] = t - xxx[0] - y
        xxx[0] = t
 
 
def roll_skew(ndarray[float64_t] values, ndarray[int64_t] start,
              ndarray[int64_t] end, int64_t minp) -> np.ndarray:
    cdef:
        Py_ssize_t i, j
        float64_t val, min_val, mean_val, sum_val = 0
        float64_t compensation_xxx_add, compensation_xxx_remove
        float64_t compensation_xx_add, compensation_xx_remove
        float64_t compensation_x_add, compensation_x_remove
        float64_t x, xx, xxx
        float64_t prev_value
        int64_t nobs = 0, N = len(start), V = len(values), nobs_mean = 0
        int64_t s, e, num_consecutive_same_value
        ndarray[float64_t] output, values_copy
        bint is_monotonic_increasing_bounds
 
    minp = max(minp, 3)
    is_monotonic_increasing_bounds = is_monotonic_increasing_start_end_bounds(
        start, end
    )
    output = np.empty(N, dtype=np.float64)
    min_val = np.nanmin(values)
    values_copy = np.copy(values)
 
    with nogil:
        for i in range(0, V):
            val = values_copy[i]
            if val == val:
                nobs_mean += 1
                sum_val += val
        mean_val = sum_val / nobs_mean
        # Other cases would lead to imprecision for smallest values
        if min_val - mean_val > -1e5:
            mean_val = round(mean_val)
            for i in range(0, V):
                values_copy[i] = values_copy[i] - mean_val
 
        for i in range(0, N):
 
            s = start[i]
            e = end[i]
 
            # Over the first window, observations can only be added
            # never removed
            if i == 0 or not is_monotonic_increasing_bounds or s >= end[i - 1]:
 
                prev_value = values[s]
                num_consecutive_same_value = 0
 
                compensation_xxx_add = compensation_xxx_remove = 0
                compensation_xx_add = compensation_xx_remove = 0
                compensation_x_add = compensation_x_remove = 0
                x = xx = xxx = 0
                nobs = 0
                for j in range(s, e):
                    val = values_copy[j]
                    add_skew(val, &nobs, &x, &xx, &xxx, &compensation_x_add,
                             &compensation_xx_add, &compensation_xxx_add,
                             &num_consecutive_same_value, &prev_value)
 
            else:
 
                # After the first window, observations can both be added
                # and removed
                # calculate deletes
                for j in range(start[i - 1], s):
                    val = values_copy[j]
                    remove_skew(val, &nobs, &x, &xx, &xxx, &compensation_x_remove,
                                &compensation_xx_remove, &compensation_xxx_remove)
 
                # calculate adds
                for j in range(end[i - 1], e):
                    val = values_copy[j]
                    add_skew(val, &nobs, &x, &xx, &xxx, &compensation_x_add,
                             &compensation_xx_add, &compensation_xxx_add,
                             &num_consecutive_same_value, &prev_value)
 
            output[i] = calc_skew(minp, nobs, x, xx, xxx, num_consecutive_same_value)
 
            if not is_monotonic_increasing_bounds:
                nobs = 0
                x = 0.0
                xx = 0.0
                xxx = 0.0
 
    return output
 
# ----------------------------------------------------------------------
# Rolling kurtosis
 
 
cdef float64_t calc_kurt(int64_t minp, int64_t nobs,
                         float64_t x, float64_t xx,
                         float64_t xxx, float64_t xxxx,
                         int64_t num_consecutive_same_value,
                         ) nogil:
    cdef:
        float64_t result, dnobs
        float64_t A, B, C, D, R, K
 
    if nobs >= minp:
        if nobs < 4:
            result = NaN
        # GH 42064 46431
        # uniform case, force result to be -3.
        elif num_consecutive_same_value >= nobs:
            result = -3.
        else:
            dnobs = <float64_t>nobs
            A = x / dnobs
            R = A * A
            B = xx / dnobs - R
            R = R * A
            C = xxx / dnobs - R - 3 * A * B
            R = R * A
            D = xxxx / dnobs - R - 6 * B * A * A - 4 * C * A
 
            # #18044: with uniform distribution, floating issue will
            #         cause B != 0. and cause the result is a very
            #         large number.
            #
            #         in core/nanops.py nanskew/nankurt call the function
            #         _zero_out_fperr(m2) to fix floating error.
            #         if the variance is less than 1e-14, it could be
            #         treat as zero, here we follow the original
            #         skew/kurt behaviour to check B <= 1e-14
            if B <= 1e-14:
                result = NaN
            else:
                K = (dnobs * dnobs - 1.) * D / (B * B) - 3 * ((dnobs - 1.) ** 2)
                result = K / ((dnobs - 2.) * (dnobs - 3.))
    else:
        result = NaN
 
    return result
 
 
cdef void add_kurt(float64_t val, int64_t *nobs,
                   float64_t *x, float64_t *xx,
                   float64_t *xxx, float64_t *xxxx,
                   float64_t *compensation_x,
                   float64_t *compensation_xx,
                   float64_t *compensation_xxx,
                   float64_t *compensation_xxxx,
                   int64_t *num_consecutive_same_value,
                   float64_t *prev_value
                   ) nogil:
    """ add a value from the kurotic calc """
    cdef:
        float64_t y, t
 
    # Not NaN
    if val == val:
        nobs[0] = nobs[0] + 1
 
        y = val - compensation_x[0]
        t = x[0] + y
        compensation_x[0] = t - x[0] - y
        x[0] = t
        y = val * val - compensation_xx[0]
        t = xx[0] + y
        compensation_xx[0] = t - xx[0] - y
        xx[0] = t
        y = val * val * val - compensation_xxx[0]
        t = xxx[0] + y
        compensation_xxx[0] = t - xxx[0] - y
        xxx[0] = t
        y = val * val * val * val - compensation_xxxx[0]
        t = xxxx[0] + y
        compensation_xxxx[0] = t - xxxx[0] - y
        xxxx[0] = t
 
        # GH#42064, record num of same values to remove floating point artifacts
        if val == prev_value[0]:
            num_consecutive_same_value[0] += 1
        else:
            # reset to 1 (include current value itself)
            num_consecutive_same_value[0] = 1
        prev_value[0] = val
 
 
cdef void remove_kurt(float64_t val, int64_t *nobs,
                      float64_t *x, float64_t *xx,
                      float64_t *xxx, float64_t *xxxx,
                      float64_t *compensation_x,
                      float64_t *compensation_xx,
                      float64_t *compensation_xxx,
                      float64_t *compensation_xxxx) nogil:
    """ remove a value from the kurotic calc """
    cdef:
        float64_t y, t
 
    # Not NaN
    if val == val:
        nobs[0] = nobs[0] - 1
 
        y = - val - compensation_x[0]
        t = x[0] + y
        compensation_x[0] = t - x[0] - y
        x[0] = t
        y = - val * val - compensation_xx[0]
        t = xx[0] + y
        compensation_xx[0] = t - xx[0] - y
        xx[0] = t
        y = - val * val * val - compensation_xxx[0]
        t = xxx[0] + y
        compensation_xxx[0] = t - xxx[0] - y
        xxx[0] = t
        y = - val * val * val * val - compensation_xxxx[0]
        t = xxxx[0] + y
        compensation_xxxx[0] = t - xxxx[0] - y
        xxxx[0] = t
 
 
def roll_kurt(ndarray[float64_t] values, ndarray[int64_t] start,
              ndarray[int64_t] end, int64_t minp) -> np.ndarray:
    cdef:
        Py_ssize_t i, j
        float64_t val, mean_val, min_val, sum_val = 0
        float64_t compensation_xxxx_add, compensation_xxxx_remove
        float64_t compensation_xxx_remove, compensation_xxx_add
        float64_t compensation_xx_remove, compensation_xx_add
        float64_t compensation_x_remove, compensation_x_add
        float64_t x, xx, xxx, xxxx
        float64_t prev_value
        int64_t nobs, s, e, num_consecutive_same_value
        int64_t N = len(start), V = len(values), nobs_mean = 0
        ndarray[float64_t] output, values_copy
        bint is_monotonic_increasing_bounds
 
    minp = max(minp, 4)
    is_monotonic_increasing_bounds = is_monotonic_increasing_start_end_bounds(
        start, end
    )
    output = np.empty(N, dtype=np.float64)
    values_copy = np.copy(values)
    min_val = np.nanmin(values)
 
    with nogil:
        for i in range(0, V):
            val = values_copy[i]
            if val == val:
                nobs_mean += 1
                sum_val += val
        mean_val = sum_val / nobs_mean
        # Other cases would lead to imprecision for smallest values
        if min_val - mean_val > -1e4:
            mean_val = round(mean_val)
            for i in range(0, V):
                values_copy[i] = values_copy[i] - mean_val
 
        for i in range(0, N):
 
            s = start[i]
            e = end[i]
 
            # Over the first window, observations can only be added
            # never removed
            if i == 0 or not is_monotonic_increasing_bounds or s >= end[i - 1]:
 
                prev_value = values[s]
                num_consecutive_same_value = 0
 
                compensation_xxxx_add = compensation_xxxx_remove = 0
                compensation_xxx_remove = compensation_xxx_add = 0
                compensation_xx_remove = compensation_xx_add = 0
                compensation_x_remove = compensation_x_add = 0
                x = xx = xxx = xxxx = 0
                nobs = 0
                for j in range(s, e):
                    add_kurt(values_copy[j], &nobs, &x, &xx, &xxx, &xxxx,
                             &compensation_x_add, &compensation_xx_add,
                             &compensation_xxx_add, &compensation_xxxx_add,
                             &num_consecutive_same_value, &prev_value)
 
            else:
 
                # After the first window, observations can both be added
                # and removed
                # calculate deletes
                for j in range(start[i - 1], s):
                    remove_kurt(values_copy[j], &nobs, &x, &xx, &xxx, &xxxx,
                                &compensation_x_remove, &compensation_xx_remove,
                                &compensation_xxx_remove, &compensation_xxxx_remove)
 
                # calculate adds
                for j in range(end[i - 1], e):
                    add_kurt(values_copy[j], &nobs, &x, &xx, &xxx, &xxxx,
                             &compensation_x_add, &compensation_xx_add,
                             &compensation_xxx_add, &compensation_xxxx_add,
                             &num_consecutive_same_value, &prev_value)
 
            output[i] = calc_kurt(minp, nobs, x, xx, xxx, xxxx,
                                  num_consecutive_same_value)
 
            if not is_monotonic_increasing_bounds:
                nobs = 0
                x = 0.0
                xx = 0.0
                xxx = 0.0
                xxxx = 0.0
 
    return output
 
 
# ----------------------------------------------------------------------
# Rolling median, min, max
 
 
def roll_median_c(const float64_t[:] values, ndarray[int64_t] start,
                  ndarray[int64_t] end, int64_t minp) -> np.ndarray:
    cdef:
        Py_ssize_t i, j
        bint err = False, is_monotonic_increasing_bounds
        int midpoint, ret = 0
        int64_t nobs = 0, N = len(start), s, e, win
        float64_t val, res
        skiplist_t *sl
        ndarray[float64_t] output
 
    is_monotonic_increasing_bounds = is_monotonic_increasing_start_end_bounds(
        start, end
    )
 
    # we use the Fixed/Variable Indexer here as the
    # actual skiplist ops outweigh any window computation costs
    output = np.empty(N, dtype=np.float64)
 
    if (end - start).max() == 0:
        output[:] = NaN
        return output
    win = (end - start).max()
    sl = skiplist_init(<int>win)
    if sl == NULL:
        raise MemoryError("skiplist_init failed")
 
    with nogil:
 
        for i in range(0, N):
            s = start[i]
            e = end[i]
 
            if i == 0 or not is_monotonic_increasing_bounds or s >= end[i - 1]:
 
                if i != 0:
                    skiplist_destroy(sl)
                    sl = skiplist_init(<int>win)
                    nobs = 0
                # setup
                for j in range(s, e):
                    val = values[j]
                    if val == val:
                        nobs += 1
                        err = skiplist_insert(sl, val) == -1
                        if err:
                            break
 
            else:
 
                # calculate adds
                for j in range(end[i - 1], e):
                    val = values[j]
                    if val == val:
                        nobs += 1
                        err = skiplist_insert(sl, val) == -1
                        if err:
                            break
 
                # calculate deletes
                for j in range(start[i - 1], s):
                    val = values[j]
                    if val == val:
                        skiplist_remove(sl, val)
                        nobs -= 1
            if nobs >= minp:
                midpoint = <int>(nobs / 2)
                if nobs % 2:
                    res = skiplist_get(sl, midpoint, &ret)
                else:
                    res = (skiplist_get(sl, midpoint, &ret) +
                           skiplist_get(sl, (midpoint - 1), &ret)) / 2
                if ret == 0:
                    res = NaN
            else:
                res = NaN
 
            output[i] = res
 
            if not is_monotonic_increasing_bounds:
                nobs = 0
                skiplist_destroy(sl)
                sl = skiplist_init(<int>win)
 
    skiplist_destroy(sl)
    if err:
        raise MemoryError("skiplist_insert failed")
    return output
 
 
# ----------------------------------------------------------------------
 
# Moving maximum / minimum code taken from Bottleneck under the terms
# of its Simplified BSD license
# https://github.com/pydata/bottleneck
 
 
cdef float64_t init_mm(float64_t ai, Py_ssize_t *nobs, bint is_max) nogil:
 
    if ai == ai:
        nobs[0] = nobs[0] + 1
    elif is_max:
        ai = MINfloat64
    else:
        ai = MAXfloat64
 
    return ai
 
 
cdef void remove_mm(float64_t aold, Py_ssize_t *nobs) nogil:
    """ remove a value from the mm calc """
    if aold == aold:
        nobs[0] = nobs[0] - 1
 
 
cdef float64_t calc_mm(int64_t minp, Py_ssize_t nobs,
                       float64_t value) nogil:
    cdef:
        float64_t result
 
    if nobs >= minp:
        result = value
    else:
        result = NaN
 
    return result
 
 
def roll_max(ndarray[float64_t] values, ndarray[int64_t] start,
             ndarray[int64_t] end, int64_t minp) -> np.ndarray:
    """
    Moving max of 1d array of any numeric type along axis=0 ignoring NaNs.
 
    Parameters
    ----------
    values : np.ndarray[np.float64]
    window : int, size of rolling window
    minp : if number of observations in window
          is below this, output a NaN
    index : ndarray, optional
       index for window computation
    closed : 'right', 'left', 'both', 'neither'
            make the interval closed on the right, left,
            both or neither endpoints
 
    Returns
    -------
    np.ndarray[float]
    """
    return _roll_min_max(values, start, end, minp, is_max=1)
 
 
def roll_min(ndarray[float64_t] values, ndarray[int64_t] start,
             ndarray[int64_t] end, int64_t minp) -> np.ndarray:
    """
    Moving min of 1d array of any numeric type along axis=0 ignoring NaNs.
 
    Parameters
    ----------
    values : np.ndarray[np.float64]
    window : int, size of rolling window
    minp : if number of observations in window
          is below this, output a NaN
    index : ndarray, optional
       index for window computation
 
    Returns
    -------
    np.ndarray[float]
    """
    return _roll_min_max(values, start, end, minp, is_max=0)
 
 
cdef _roll_min_max(ndarray[float64_t] values,
                   ndarray[int64_t] starti,
                   ndarray[int64_t] endi,
                   int64_t minp,
                   bint is_max):
    cdef:
        float64_t ai
        int64_t curr_win_size, start
        Py_ssize_t i, k, nobs = 0, N = len(starti)
        deque Q[int64_t]  # min/max always the front
        deque W[int64_t]  # track the whole window for nobs compute
        ndarray[float64_t, ndim=1] output
 
    output = np.empty(N, dtype=np.float64)
    Q = deque[int64_t]()
    W = deque[int64_t]()
 
    with nogil:
 
        # This is using a modified version of the C++ code in this
        # SO post: https://stackoverflow.com/a/12239580
        # The original impl didn't deal with variable window sizes
        # So the code was optimized for that
 
        # first window's size
        curr_win_size = endi[0] - starti[0]
        # GH 32865
        # Anchor output index to values index to provide custom
        # BaseIndexer support
        for i in range(N):
 
            curr_win_size = endi[i] - starti[i]
            if i == 0:
                start = starti[i]
            else:
                start = endi[i - 1]
 
            for k in range(start, endi[i]):
                ai = init_mm(values[k], &nobs, is_max)
                # Discard previous entries if we find new min or max
                if is_max:
                    while not Q.empty() and ((ai >= values[Q.back()]) or
                                             values[Q.back()] != values[Q.back()]):
                        Q.pop_back()
                else:
                    while not Q.empty() and ((ai <= values[Q.back()]) or
                                             values[Q.back()] != values[Q.back()]):
                        Q.pop_back()
                Q.push_back(k)
                W.push_back(k)
 
            # Discard entries outside and left of current window
            while not Q.empty() and Q.front() <= starti[i] - 1:
                Q.pop_front()
            while not W.empty() and W.front() <= starti[i] - 1:
                remove_mm(values[W.front()], &nobs)
                W.pop_front()
 
            # Save output based on index in input value array
            if not Q.empty() and curr_win_size > 0:
                output[i] = calc_mm(minp, nobs, values[Q.front()])
            else:
                output[i] = NaN
 
    return output
 
 
cdef enum InterpolationType:
    LINEAR,
    LOWER,
    HIGHER,
    NEAREST,
    MIDPOINT
 
 
interpolation_types = {
    "linear": LINEAR,
    "lower": LOWER,
    "higher": HIGHER,
    "nearest": NEAREST,
    "midpoint": MIDPOINT,
}
 
 
def roll_quantile(const float64_t[:] values, ndarray[int64_t] start,
                  ndarray[int64_t] end, int64_t minp,
                  float64_t quantile, str interpolation) -> np.ndarray:
    """
    O(N log(window)) implementation using skip list
    """
    cdef:
        Py_ssize_t i, j, s, e, N = len(start), idx
        int ret = 0
        int64_t nobs = 0, win
        float64_t val, idx_with_fraction
        float64_t vlow, vhigh
        skiplist_t *skiplist
        InterpolationType interpolation_type
        ndarray[float64_t] output
 
    if quantile <= 0.0 or quantile >= 1.0:
        raise ValueError(f"quantile value {quantile} not in [0, 1]")
 
    try:
        interpolation_type = interpolation_types[interpolation]
    except KeyError:
        raise ValueError(f"Interpolation '{interpolation}' is not supported")
 
    is_monotonic_increasing_bounds = is_monotonic_increasing_start_end_bounds(
        start, end
    )
    # we use the Fixed/Variable Indexer here as the
    # actual skiplist ops outweigh any window computation costs
    output = np.empty(N, dtype=np.float64)
 
    win = (end - start).max()
    if win == 0:
        output[:] = NaN
        return output
    skiplist = skiplist_init(<int>win)
    if skiplist == NULL:
        raise MemoryError("skiplist_init failed")
 
    with nogil:
        for i in range(0, N):
            s = start[i]
            e = end[i]
 
            if i == 0 or not is_monotonic_increasing_bounds or s >= end[i - 1]:
                if i != 0:
                    nobs = 0
                    skiplist_destroy(skiplist)
                    skiplist = skiplist_init(<int>win)
 
                # setup
                for j in range(s, e):
                    val = values[j]
                    if val == val:
                        nobs += 1
                        skiplist_insert(skiplist, val)
 
            else:
                # calculate adds
                for j in range(end[i - 1], e):
                    val = values[j]
                    if val == val:
                        nobs += 1
                        skiplist_insert(skiplist, val)
 
                # calculate deletes
                for j in range(start[i - 1], s):
                    val = values[j]
                    if val == val:
                        skiplist_remove(skiplist, val)
                        nobs -= 1
            if nobs >= minp:
                if nobs == 1:
                    # Single value in skip list
                    output[i] = skiplist_get(skiplist, 0, &ret)
                else:
                    idx_with_fraction = quantile * (nobs - 1)
                    idx = <int>idx_with_fraction
 
                    if idx_with_fraction == idx:
                        # no need to interpolate
                        output[i] = skiplist_get(skiplist, idx, &ret)
                        continue
 
                    if interpolation_type == LINEAR:
                        vlow = skiplist_get(skiplist, idx, &ret)
                        vhigh = skiplist_get(skiplist, idx + 1, &ret)
                        output[i] = ((vlow + (vhigh - vlow) *
                                      (idx_with_fraction - idx)))
                    elif interpolation_type == LOWER:
                        output[i] = skiplist_get(skiplist, idx, &ret)
                    elif interpolation_type == HIGHER:
                        output[i] = skiplist_get(skiplist, idx + 1, &ret)
                    elif interpolation_type == NEAREST:
                        # the same behaviour as round()
                        if idx_with_fraction - idx == 0.5:
                            if idx % 2 == 0:
                                output[i] = skiplist_get(skiplist, idx, &ret)
                            else:
                                output[i] = skiplist_get(
                                    skiplist, idx + 1, &ret)
                        elif idx_with_fraction - idx < 0.5:
                            output[i] = skiplist_get(skiplist, idx, &ret)
                        else:
                            output[i] = skiplist_get(skiplist, idx + 1, &ret)
                    elif interpolation_type == MIDPOINT:
                        vlow = skiplist_get(skiplist, idx, &ret)
                        vhigh = skiplist_get(skiplist, idx + 1, &ret)
                        output[i] = <float64_t>(vlow + vhigh) / 2
 
                    if ret == 0:
                        output[i] = NaN
            else:
                output[i] = NaN
 
    skiplist_destroy(skiplist)
 
    return output
 
 
rolling_rank_tiebreakers = {
    "average": TiebreakEnumType.TIEBREAK_AVERAGE,
    "min": TiebreakEnumType.TIEBREAK_MIN,
    "max": TiebreakEnumType.TIEBREAK_MAX,
}
 
 
def roll_rank(const float64_t[:] values, ndarray[int64_t] start,
              ndarray[int64_t] end, int64_t minp, bint percentile,
              str method, bint ascending) -> np.ndarray:
    """
    O(N log(window)) implementation using skip list
 
    derived from roll_quantile
    """
    cdef:
        Py_ssize_t i, j, s, e, N = len(start)
        float64_t rank_min = 0, rank = 0
        int64_t nobs = 0, win
        float64_t val
        skiplist_t *skiplist
        float64_t[::1] output
        TiebreakEnumType rank_type
 
    try:
        rank_type = rolling_rank_tiebreakers[method]
    except KeyError:
        raise ValueError(f"Method '{method}' is not supported")
 
    is_monotonic_increasing_bounds = is_monotonic_increasing_start_end_bounds(
        start, end
    )
    # we use the Fixed/Variable Indexer here as the
    # actual skiplist ops outweigh any window computation costs
    output = np.empty(N, dtype=np.float64)
 
    win = (end - start).max()
    if win == 0:
        output[:] = NaN
        return np.asarray(output)
    skiplist = skiplist_init(<int>win)
    if skiplist == NULL:
        raise MemoryError("skiplist_init failed")
 
    with nogil:
        for i in range(N):
            s = start[i]
            e = end[i]
 
            if i == 0 or not is_monotonic_increasing_bounds or s >= end[i - 1]:
                if i != 0:
                    nobs = 0
                    skiplist_destroy(skiplist)
                    skiplist = skiplist_init(<int>win)
 
                # setup
                for j in range(s, e):
                    val = values[j] if ascending else -values[j]
                    if val == val:
                        nobs += 1
                        rank = skiplist_insert(skiplist, val)
                        if rank == -1:
                            raise MemoryError("skiplist_insert failed")
                        if rank_type == TiebreakEnumType.TIEBREAK_AVERAGE:
                            # The average rank of `val` is the sum of the ranks of all
                            # instances of `val` in the skip list divided by the number
                            # of instances. The sum of consecutive integers from 1 to N
                            # is N * (N + 1) / 2.
                            # The sum of the ranks is the sum of integers from the
                            # lowest rank to the highest rank, which is the sum of
                            # integers from 1 to the highest rank minus the sum of
                            # integers from 1 to one less than the lowest rank.
                            rank_min = skiplist_min_rank(skiplist, val)
                            rank = (((rank * (rank + 1) / 2)
                                    - ((rank_min - 1) * rank_min / 2))
                                    / (rank - rank_min + 1))
                        elif rank_type == TiebreakEnumType.TIEBREAK_MIN:
                            rank = skiplist_min_rank(skiplist, val)
                    else:
                        rank = NaN
 
            else:
                # calculate deletes
                for j in range(start[i - 1], s):
                    val = values[j] if ascending else -values[j]
                    if val == val:
                        skiplist_remove(skiplist, val)
                        nobs -= 1
 
                # calculate adds
                for j in range(end[i - 1], e):
                    val = values[j] if ascending else -values[j]
                    if val == val:
                        nobs += 1
                        rank = skiplist_insert(skiplist, val)
                        if rank == -1:
                            raise MemoryError("skiplist_insert failed")
                        if rank_type == TiebreakEnumType.TIEBREAK_AVERAGE:
                            rank_min = skiplist_min_rank(skiplist, val)
                            rank = (((rank * (rank + 1) / 2)
                                    - ((rank_min - 1) * rank_min / 2))
                                    / (rank - rank_min + 1))
                        elif rank_type == TiebreakEnumType.TIEBREAK_MIN:
                            rank = skiplist_min_rank(skiplist, val)
                    else:
                        rank = NaN
            if nobs >= minp:
                output[i] = rank / nobs if percentile else rank
            else:
                output[i] = NaN
 
    skiplist_destroy(skiplist)
 
    return np.asarray(output)
 
 
def roll_apply(object obj,
               ndarray[int64_t] start, ndarray[int64_t] end,
               int64_t minp,
               object function, bint raw,
               tuple args, dict kwargs) -> np.ndarray:
    cdef:
        ndarray[float64_t] output, counts
        ndarray[float64_t, cast=True] arr
        Py_ssize_t i, s, e, N = len(start), n = len(obj)
 
    if n == 0:
        return np.array([], dtype=np.float64)
 
    arr = np.asarray(obj)
 
    # ndarray input
    if raw and not arr.flags.c_contiguous:
        arr = arr.copy("C")
 
    counts = roll_sum(np.isfinite(arr).astype(float), start, end, minp)
 
    output = np.empty(N, dtype=np.float64)
 
    for i in range(N):
 
        s = start[i]
        e = end[i]
 
        if counts[i] >= minp:
            if raw:
                output[i] = function(arr[s:e], *args, **kwargs)
            else:
                output[i] = function(obj.iloc[s:e], *args, **kwargs)
        else:
            output[i] = NaN
 
    return output
 
 
# ----------------------------------------------------------------------
# Rolling sum and mean for weighted window
 
 
def roll_weighted_sum(
    const float64_t[:] values, const float64_t[:] weights, int minp
) -> np.ndarray:
    return _roll_weighted_sum_mean(values, weights, minp, avg=0)
 
 
def roll_weighted_mean(
    const float64_t[:] values, const float64_t[:] weights, int minp
) -> np.ndarray:
    return _roll_weighted_sum_mean(values, weights, minp, avg=1)
 
 
cdef float64_t[:] _roll_weighted_sum_mean(const float64_t[:] values,
                                          const float64_t[:] weights,
                                          int minp, bint avg):
    """
    Assume len(weights) << len(values)
    """
    cdef:
        float64_t[:] output, tot_wgt, counts
        Py_ssize_t in_i, win_i, win_n, in_n
        float64_t val_in, val_win, c, w
 
    in_n = len(values)
    win_n = len(weights)
 
    output = np.zeros(in_n, dtype=np.float64)
    counts = np.zeros(in_n, dtype=np.float64)
    if avg:
        tot_wgt = np.zeros(in_n, dtype=np.float64)
 
    elif minp > in_n:
        minp = in_n + 1
 
    minp = max(minp, 1)
 
    with nogil:
        if avg:
            for win_i in range(win_n):
                val_win = weights[win_i]
                if val_win != val_win:
                    continue
 
                for in_i in range(in_n - (win_n - win_i) + 1):
                    val_in = values[in_i]
                    if val_in == val_in:
                        output[in_i + (win_n - win_i) - 1] += val_in * val_win
                        counts[in_i + (win_n - win_i) - 1] += 1
                        tot_wgt[in_i + (win_n - win_i) - 1] += val_win
 
            for in_i in range(in_n):
                c = counts[in_i]
                if c < minp:
                    output[in_i] = NaN
                else:
                    w = tot_wgt[in_i]
                    if w == 0:
                        output[in_i] = NaN
                    else:
                        output[in_i] /= tot_wgt[in_i]
 
        else:
            for win_i in range(win_n):
                val_win = weights[win_i]
                if val_win != val_win:
                    continue
 
                for in_i in range(in_n - (win_n - win_i) + 1):
                    val_in = values[in_i]
 
                    if val_in == val_in:
                        output[in_i + (win_n - win_i) - 1] += val_in * val_win
                        counts[in_i + (win_n - win_i) - 1] += 1
 
            for in_i in range(in_n):
                c = counts[in_i]
                if c < minp:
                    output[in_i] = NaN
 
    return output
 
 
# ----------------------------------------------------------------------
# Rolling var for weighted window
 
 
cdef float64_t calc_weighted_var(float64_t t,
                                 float64_t sum_w,
                                 Py_ssize_t win_n,
                                 unsigned int ddof,
                                 float64_t nobs,
                                 int64_t minp) nogil:
    """
    Calculate weighted variance for a window using West's method.
 
    Paper: https://dl.acm.org/citation.cfm?id=359153
 
    Parameters
    ----------
    t: float64_t
        sum of weighted squared differences
    sum_w: float64_t
        sum of weights
    win_n: Py_ssize_t
        window size
    ddof: unsigned int
        delta degrees of freedom
    nobs: float64_t
        number of observations
    minp: int64_t
        minimum number of observations
 
    Returns
    -------
    result : float64_t
        weighted variance of the window
    """
 
    cdef:
        float64_t result
 
    # Variance is unchanged if no observation is added or removed
    if (nobs >= minp) and (nobs > ddof):
 
        # pathological case
        if nobs == 1:
            result = 0
        else:
            result = t * win_n / ((win_n - ddof) * sum_w)
            if result < 0:
                result = 0
    else:
        result = NaN
 
    return result
 
 
cdef void add_weighted_var(float64_t val,
                           float64_t w,
                           float64_t *t,
                           float64_t *sum_w,
                           float64_t *mean,
                           float64_t *nobs) nogil:
    """
    Update weighted mean, sum of weights and sum of weighted squared
    differences to include value and weight pair in weighted variance
    calculation using West's method.
 
    Paper: https://dl.acm.org/citation.cfm?id=359153
 
    Parameters
    ----------
    val: float64_t
        window values
    w: float64_t
        window weights
    t: float64_t
        sum of weighted squared differences
    sum_w: float64_t
        sum of weights
    mean: float64_t
        weighted mean
    nobs: float64_t
        number of observations
    """
 
    cdef:
        float64_t temp, q, r
 
    if val != val:
        return
 
    nobs[0] = nobs[0] + 1
 
    q = val - mean[0]
    temp = sum_w[0] + w
    r = q * w / temp
 
    mean[0] = mean[0] + r
    t[0] = t[0] + r * sum_w[0] * q
    sum_w[0] = temp
 
 
cdef void remove_weighted_var(float64_t val,
                              float64_t w,
                              float64_t *t,
                              float64_t *sum_w,
                              float64_t *mean,
                              float64_t *nobs) nogil:
    """
    Update weighted mean, sum of weights and sum of weighted squared
    differences to remove value and weight pair from weighted variance
    calculation using West's method.
 
    Paper: https://dl.acm.org/citation.cfm?id=359153
 
    Parameters
    ----------
    val: float64_t
        window values
    w: float64_t
        window weights
    t: float64_t
        sum of weighted squared differences
    sum_w: float64_t
        sum of weights
    mean: float64_t
        weighted mean
    nobs: float64_t
        number of observations
    """
 
    cdef:
        float64_t temp, q, r
 
    if val == val:
        nobs[0] = nobs[0] - 1
 
        if nobs[0]:
            q = val - mean[0]
            temp = sum_w[0] - w
            r = q * w / temp
 
            mean[0] = mean[0] - r
            t[0] = t[0] - r * sum_w[0] * q
            sum_w[0] = temp
 
        else:
            t[0] = 0
            sum_w[0] = 0
            mean[0] = 0
 
 
def roll_weighted_var(const float64_t[:] values, const float64_t[:] weights,
                      int64_t minp, unsigned int ddof):
    """
    Calculates weighted rolling variance using West's online algorithm.
 
    Paper: https://dl.acm.org/citation.cfm?id=359153
 
    Parameters
    ----------
    values: float64_t[:]
        values to roll window over
    weights: float64_t[:]
        array of weights whose length is window size
    minp: int64_t
        minimum number of observations to calculate
        variance of a window
    ddof: unsigned int
         the divisor used in variance calculations
         is the window size - ddof
 
    Returns
    -------
    output: float64_t[:]
        weighted variances of windows
    """
 
    cdef:
        float64_t t = 0, sum_w = 0, mean = 0, nobs = 0
        float64_t val, pre_val, w, pre_w
        Py_ssize_t i, n, win_n
        float64_t[:] output
 
    n = len(values)
    win_n = len(weights)
    output = np.empty(n, dtype=np.float64)
 
    with nogil:
 
        for i in range(min(win_n, n)):
            add_weighted_var(values[i], weights[i], &t,
                             &sum_w, &mean, &nobs)
 
            output[i] = calc_weighted_var(t, sum_w, win_n,
                                          ddof, nobs, minp)
 
        for i in range(win_n, n):
            val = values[i]
            pre_val = values[i - win_n]
 
            w = weights[i % win_n]
            pre_w = weights[(i - win_n) % win_n]
 
            if val == val:
                if pre_val == pre_val:
                    remove_weighted_var(pre_val, pre_w, &t,
                                        &sum_w, &mean, &nobs)
 
                add_weighted_var(val, w, &t, &sum_w, &mean, &nobs)
 
            elif pre_val == pre_val:
                remove_weighted_var(pre_val, pre_w, &t,
                                    &sum_w, &mean, &nobs)
 
            output[i] = calc_weighted_var(t, sum_w, win_n,
                                          ddof, nobs, minp)
 
    return output
 
 
# ----------------------------------------------------------------------
# Exponentially weighted moving
@cython.cpow(True)
def ewm(const float64_t[:] vals, const int64_t[:] start, const int64_t[:] end,
        int minp, float64_t com, bint adjust, bint ignore_na,
        const float64_t[:] deltas=None, bint normalize=True) -> np.ndarray:
    """
    Compute exponentially-weighted moving average or sum using center-of-mass.
 
    Parameters
    ----------
    vals : ndarray (float64 type)
    start: ndarray (int64 type)
    end: ndarray (int64 type)
    minp : int
    com : float64
    adjust : bool
    ignore_na : bool
    deltas : ndarray (float64 type), optional. If None, implicitly assumes equally
             spaced points (used when `times` is not passed)
    normalize : bool, optional.
                If True, calculate the mean. If False, calculate the sum.
 
    Returns
    -------
    np.ndarray[float64_t]
    """
 
    cdef:
        Py_ssize_t i, j, s, e, nobs, win_size, N = len(vals), M = len(start)
        const float64_t[:] sub_vals
        const float64_t[:] sub_deltas=None
        ndarray[float64_t] sub_output, output = np.empty(N, dtype=np.float64)
        float64_t alpha, old_wt_factor, new_wt, weighted, old_wt, cur
        bint is_observation, use_deltas
 
    if N == 0:
        return output
 
    use_deltas = deltas is not None
 
    alpha = 1. / (1. + com)
    old_wt_factor = 1. - alpha
    new_wt = 1. if adjust else alpha
 
    for j in range(M):
        s = start[j]
        e = end[j]
        sub_vals = vals[s:e]
        # note that len(deltas) = len(vals) - 1 and deltas[i] is to be used in
        # conjunction with vals[i+1]
        if use_deltas:
            sub_deltas = deltas[s:e - 1]
        win_size = len(sub_vals)
        sub_output = np.empty(win_size, dtype=np.float64)
 
        weighted = sub_vals[0]
        is_observation = weighted == weighted
        nobs = int(is_observation)
        sub_output[0] = weighted if nobs >= minp else NaN
        old_wt = 1.
 
        with nogil:
            for i in range(1, win_size):
                cur = sub_vals[i]
                is_observation = cur == cur
                nobs += is_observation
                if weighted == weighted:
 
                    if is_observation or not ignore_na:
                        if normalize:
                            if use_deltas:
                                old_wt *= old_wt_factor ** sub_deltas[i - 1]
                            else:
                                old_wt *= old_wt_factor
                        else:
                            weighted = old_wt_factor * weighted
                        if is_observation:
                            if normalize:
                                # avoid numerical errors on constant series
                                if weighted != cur:
                                    weighted = old_wt * weighted + new_wt * cur
                                    weighted /= (old_wt + new_wt)
                                if adjust:
                                    old_wt += new_wt
                                else:
                                    old_wt = 1.
                            else:
                                weighted += cur
                elif is_observation:
                    weighted = cur
 
                sub_output[i] = weighted if nobs >= minp else NaN
 
        output[s:e] = sub_output
 
    return output
 
 
def ewmcov(const float64_t[:] input_x, const int64_t[:] start, const int64_t[:] end,
           int minp, const float64_t[:] input_y, float64_t com, bint adjust,
           bint ignore_na, bint bias) -> np.ndarray:
    """
    Compute exponentially-weighted moving variance using center-of-mass.
 
    Parameters
    ----------
    input_x : ndarray (float64 type)
    start: ndarray (int64 type)
    end: ndarray (int64 type)
    minp : int
    input_y : ndarray (float64 type)
    com : float64
    adjust : bool
    ignore_na : bool
    bias : bool
 
    Returns
    -------
    np.ndarray[float64_t]
    """
 
    cdef:
        Py_ssize_t i, j, s, e, win_size, nobs
        Py_ssize_t N = len(input_x), M = len(input_y), L = len(start)
        float64_t alpha, old_wt_factor, new_wt, mean_x, mean_y, cov
        float64_t sum_wt, sum_wt2, old_wt, cur_x, cur_y, old_mean_x, old_mean_y
        float64_t numerator, denominator
        const float64_t[:] sub_x_vals, sub_y_vals
        ndarray[float64_t] sub_out, output = np.empty(N, dtype=np.float64)
        bint is_observation
 
    if M != N:
        raise ValueError(f"arrays are of different lengths ({N} and {M})")
 
    if N == 0:
        return output
 
    alpha = 1. / (1. + com)
    old_wt_factor = 1. - alpha
    new_wt = 1. if adjust else alpha
 
    for j in range(L):
        s = start[j]
        e = end[j]
        sub_x_vals = input_x[s:e]
        sub_y_vals = input_y[s:e]
        win_size = len(sub_x_vals)
        sub_out = np.empty(win_size, dtype=np.float64)
 
        mean_x = sub_x_vals[0]
        mean_y = sub_y_vals[0]
        is_observation = (mean_x == mean_x) and (mean_y == mean_y)
        nobs = int(is_observation)
        if not is_observation:
            mean_x = NaN
            mean_y = NaN
        sub_out[0] = (0. if bias else NaN) if nobs >= minp else NaN
        cov = 0.
        sum_wt = 1.
        sum_wt2 = 1.
        old_wt = 1.
 
        with nogil:
            for i in range(1, win_size):
                cur_x = sub_x_vals[i]
                cur_y = sub_y_vals[i]
                is_observation = (cur_x == cur_x) and (cur_y == cur_y)
                nobs += is_observation
                if mean_x == mean_x:
                    if is_observation or not ignore_na:
                        sum_wt *= old_wt_factor
                        sum_wt2 *= (old_wt_factor * old_wt_factor)
                        old_wt *= old_wt_factor
                        if is_observation:
                            old_mean_x = mean_x
                            old_mean_y = mean_y
 
                            # avoid numerical errors on constant series
                            if mean_x != cur_x:
                                mean_x = ((old_wt * old_mean_x) +
                                          (new_wt * cur_x)) / (old_wt + new_wt)
 
                            # avoid numerical errors on constant series
                            if mean_y != cur_y:
                                mean_y = ((old_wt * old_mean_y) +
                                          (new_wt * cur_y)) / (old_wt + new_wt)
                            cov = ((old_wt * (cov + ((old_mean_x - mean_x) *
                                                     (old_mean_y - mean_y)))) +
                                   (new_wt * ((cur_x - mean_x) *
                                              (cur_y - mean_y)))) / (old_wt + new_wt)
                            sum_wt += new_wt
                            sum_wt2 += (new_wt * new_wt)
                            old_wt += new_wt
                            if not adjust:
                                sum_wt /= old_wt
                                sum_wt2 /= (old_wt * old_wt)
                                old_wt = 1.
                elif is_observation:
                    mean_x = cur_x
                    mean_y = cur_y
 
                if nobs >= minp:
                    if not bias:
                        numerator = sum_wt * sum_wt
                        denominator = numerator - sum_wt2
                        if denominator > 0:
                            sub_out[i] = (numerator / denominator) * cov
                        else:
                            sub_out[i] = NaN
                    else:
                        sub_out[i] = cov
                else:
                    sub_out[i] = NaN
 
        output[s:e] = sub_out
 
    return output