1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
"""
Functions for accessing attributes of Timestamp/datetime64/datetime-like
objects and arrays
"""
from locale import LC_TIME
 
from _strptime import LocaleTime
 
cimport cython
from cython cimport Py_ssize_t
 
import numpy as np
 
cimport numpy as cnp
from numpy cimport (
    int8_t,
    int32_t,
    int64_t,
    ndarray,
    uint32_t,
)
 
cnp.import_array()
 
from pandas._config.localization import set_locale
 
from pandas._libs.tslibs.ccalendar import (
    DAYS_FULL,
    MONTHS_FULL,
)
 
from pandas._libs.tslibs.ccalendar cimport (
    dayofweek,
    get_day_of_year,
    get_days_in_month,
    get_firstbday,
    get_iso_calendar,
    get_lastbday,
    get_week_of_year,
    iso_calendar_t,
)
from pandas._libs.tslibs.nattype cimport NPY_NAT
from pandas._libs.tslibs.np_datetime cimport (
    NPY_DATETIMEUNIT,
    NPY_FR_ns,
    npy_datetimestruct,
    pandas_datetime_to_datetimestruct,
    pandas_timedelta_to_timedeltastruct,
    pandas_timedeltastruct,
)
 
 
@cython.wraparound(False)
@cython.boundscheck(False)
def build_field_sarray(const int64_t[:] dtindex, NPY_DATETIMEUNIT reso):
    """
    Datetime as int64 representation to a structured array of fields
    """
    cdef:
        Py_ssize_t i, count = len(dtindex)
        npy_datetimestruct dts
        ndarray[int32_t] years, months, days, hours, minutes, seconds, mus
 
    sa_dtype = [
        ("Y", "i4"),  # year
        ("M", "i4"),  # month
        ("D", "i4"),  # day
        ("h", "i4"),  # hour
        ("m", "i4"),  # min
        ("s", "i4"),  # second
        ("u", "i4"),  # microsecond
    ]
 
    out = np.empty(count, dtype=sa_dtype)
 
    years = out["Y"]
    months = out["M"]
    days = out["D"]
    hours = out["h"]
    minutes = out["m"]
    seconds = out["s"]
    mus = out["u"]
 
    for i in range(count):
        pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
        years[i] = dts.year
        months[i] = dts.month
        days[i] = dts.day
        hours[i] = dts.hour
        minutes[i] = dts.min
        seconds[i] = dts.sec
        mus[i] = dts.us
 
    return out
 
 
def month_position_check(fields, weekdays) -> str | None:
    cdef:
        int32_t daysinmonth, y, m, d
        bint calendar_end = True
        bint business_end = True
        bint calendar_start = True
        bint business_start = True
        bint cal
        int32_t[:] years = fields["Y"]
        int32_t[:] months = fields["M"]
        int32_t[:] days = fields["D"]
 
    for y, m, d, wd in zip(years, months, days, weekdays):
        if calendar_start:
            calendar_start &= d == 1
        if business_start:
            business_start &= d == 1 or (d <= 3 and wd == 0)
 
        if calendar_end or business_end:
            daysinmonth = get_days_in_month(y, m)
            cal = d == daysinmonth
            if calendar_end:
                calendar_end &= cal
            if business_end:
                business_end &= cal or (daysinmonth - d < 3 and wd == 4)
        elif not calendar_start and not business_start:
            break
 
    if calendar_end:
        return "ce"
    elif business_end:
        return "be"
    elif calendar_start:
        return "cs"
    elif business_start:
        return "bs"
    else:
        return None
 
 
@cython.wraparound(False)
@cython.boundscheck(False)
def get_date_name_field(
    const int64_t[:] dtindex,
    str field,
    object locale=None,
    NPY_DATETIMEUNIT reso=NPY_FR_ns,
):
    """
    Given a int64-based datetime index, return array of strings of date
    name based on requested field (e.g. day_name)
    """
    cdef:
        Py_ssize_t i, count = dtindex.shape[0]
        ndarray[object] out, names
        npy_datetimestruct dts
        int dow
 
    out = np.empty(count, dtype=object)
 
    if field == "day_name":
        if locale is None:
            names = np.array(DAYS_FULL, dtype=np.object_)
        else:
            names = np.array(_get_locale_names("f_weekday", locale),
                             dtype=np.object_)
        for i in range(count):
            if dtindex[i] == NPY_NAT:
                out[i] = np.nan
                continue
 
            pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
            dow = dayofweek(dts.year, dts.month, dts.day)
            out[i] = names[dow].capitalize()
 
    elif field == "month_name":
        if locale is None:
            names = np.array(MONTHS_FULL, dtype=np.object_)
        else:
            names = np.array(_get_locale_names("f_month", locale),
                             dtype=np.object_)
        for i in range(count):
            if dtindex[i] == NPY_NAT:
                out[i] = np.nan
                continue
 
            pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
            out[i] = names[dts.month].capitalize()
 
    else:
        raise ValueError(f"Field {field} not supported")
 
    return out
 
 
cdef bint _is_on_month(int month, int compare_month, int modby) nogil:
    """
    Analogous to DateOffset.is_on_offset checking for the month part of a date.
    """
    if modby == 1:
        return True
    elif modby == 3:
        return (month - compare_month) % 3 == 0
    else:
        return month == compare_month
 
 
@cython.wraparound(False)
@cython.boundscheck(False)
def get_start_end_field(
    const int64_t[:] dtindex,
    str field,
    str freqstr=None,
    int month_kw=12,
    NPY_DATETIMEUNIT reso=NPY_FR_ns,
):
    """
    Given an int64-based datetime index return array of indicators
    of whether timestamps are at the start/end of the month/quarter/year
    (defined by frequency).
 
    Parameters
    ----------
    dtindex : ndarray[int64]
    field : str
    frestr : str or None, default None
    month_kw : int, default 12
    reso : NPY_DATETIMEUNIT, default NPY_FR_ns
 
    Returns
    -------
    ndarray[bool]
    """
    cdef:
        Py_ssize_t i
        int count = dtindex.shape[0]
        bint is_business = 0
        int end_month = 12
        int start_month = 1
        ndarray[int8_t] out
        npy_datetimestruct dts
        int compare_month, modby
 
    out = np.zeros(count, dtype="int8")
 
    if freqstr:
        if freqstr == "C":
            raise ValueError(f"Custom business days is not supported by {field}")
        is_business = freqstr[0] == "B"
 
        # YearBegin(), BYearBegin() use month = starting month of year.
        # QuarterBegin(), BQuarterBegin() use startingMonth = starting
        # month of year. Other offsets use month, startingMonth as ending
        # month of year.
 
        if (freqstr[0:2] in ["MS", "QS", "AS"]) or (
                freqstr[1:3] in ["MS", "QS", "AS"]):
            end_month = 12 if month_kw == 1 else month_kw - 1
            start_month = month_kw
        else:
            end_month = month_kw
            start_month = (end_month % 12) + 1
    else:
        end_month = 12
        start_month = 1
 
    compare_month = start_month if "start" in field else end_month
    if "month" in field:
        modby = 1
    elif "quarter" in field:
        modby = 3
    else:
        modby = 12
 
    if field in ["is_month_start", "is_quarter_start", "is_year_start"]:
        if is_business:
            for i in range(count):
                if dtindex[i] == NPY_NAT:
                    out[i] = 0
                    continue
 
                pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
 
                if _is_on_month(dts.month, compare_month, modby) and (
                        dts.day == get_firstbday(dts.year, dts.month)):
                    out[i] = 1
 
        else:
            for i in range(count):
                if dtindex[i] == NPY_NAT:
                    out[i] = 0
                    continue
 
                pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
 
                if _is_on_month(dts.month, compare_month, modby) and dts.day == 1:
                    out[i] = 1
 
    elif field in ["is_month_end", "is_quarter_end", "is_year_end"]:
        if is_business:
            for i in range(count):
                if dtindex[i] == NPY_NAT:
                    out[i] = 0
                    continue
 
                pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
 
                if _is_on_month(dts.month, compare_month, modby) and (
                        dts.day == get_lastbday(dts.year, dts.month)):
                    out[i] = 1
 
        else:
            for i in range(count):
                if dtindex[i] == NPY_NAT:
                    out[i] = 0
                    continue
 
                pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
 
                if _is_on_month(dts.month, compare_month, modby) and (
                        dts.day == get_days_in_month(dts.year, dts.month)):
                    out[i] = 1
 
    else:
        raise ValueError(f"Field {field} not supported")
 
    return out.view(bool)
 
 
@cython.wraparound(False)
@cython.boundscheck(False)
def get_date_field(
    const int64_t[:] dtindex,
    str field,
    NPY_DATETIMEUNIT reso=NPY_FR_ns,
):
    """
    Given a int64-based datetime index, extract the year, month, etc.,
    field and return an array of these values.
    """
    cdef:
        Py_ssize_t i, count = len(dtindex)
        ndarray[int32_t] out
        npy_datetimestruct dts
 
    out = np.empty(count, dtype="i4")
 
    if field == "Y":
        with nogil:
            for i in range(count):
                if dtindex[i] == NPY_NAT:
                    out[i] = -1
                    continue
 
                pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
                out[i] = dts.year
        return out
 
    elif field == "M":
        with nogil:
            for i in range(count):
                if dtindex[i] == NPY_NAT:
                    out[i] = -1
                    continue
 
                pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
                out[i] = dts.month
        return out
 
    elif field == "D":
        with nogil:
            for i in range(count):
                if dtindex[i] == NPY_NAT:
                    out[i] = -1
                    continue
 
                pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
                out[i] = dts.day
        return out
 
    elif field == "h":
        with nogil:
            for i in range(count):
                if dtindex[i] == NPY_NAT:
                    out[i] = -1
                    continue
 
                pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
                out[i] = dts.hour
                # TODO: can we de-dup with period.pyx <accessor>s?
        return out
 
    elif field == "m":
        with nogil:
            for i in range(count):
                if dtindex[i] == NPY_NAT:
                    out[i] = -1
                    continue
 
                pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
                out[i] = dts.min
        return out
 
    elif field == "s":
        with nogil:
            for i in range(count):
                if dtindex[i] == NPY_NAT:
                    out[i] = -1
                    continue
 
                pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
                out[i] = dts.sec
        return out
 
    elif field == "us":
        with nogil:
            for i in range(count):
                if dtindex[i] == NPY_NAT:
                    out[i] = -1
                    continue
 
                pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
                out[i] = dts.us
        return out
 
    elif field == "ns":
        with nogil:
            for i in range(count):
                if dtindex[i] == NPY_NAT:
                    out[i] = -1
                    continue
 
                pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
                out[i] = dts.ps // 1000
        return out
    elif field == "doy":
        with nogil:
            for i in range(count):
                if dtindex[i] == NPY_NAT:
                    out[i] = -1
                    continue
 
                pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
                out[i] = get_day_of_year(dts.year, dts.month, dts.day)
        return out
 
    elif field == "dow":
        with nogil:
            for i in range(count):
                if dtindex[i] == NPY_NAT:
                    out[i] = -1
                    continue
 
                pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
                out[i] = dayofweek(dts.year, dts.month, dts.day)
        return out
 
    elif field == "woy":
        with nogil:
            for i in range(count):
                if dtindex[i] == NPY_NAT:
                    out[i] = -1
                    continue
 
                pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
                out[i] = get_week_of_year(dts.year, dts.month, dts.day)
        return out
 
    elif field == "q":
        with nogil:
            for i in range(count):
                if dtindex[i] == NPY_NAT:
                    out[i] = -1
                    continue
 
                pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
                out[i] = dts.month
                out[i] = ((out[i] - 1) // 3) + 1
        return out
 
    elif field == "dim":
        with nogil:
            for i in range(count):
                if dtindex[i] == NPY_NAT:
                    out[i] = -1
                    continue
 
                pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
                out[i] = get_days_in_month(dts.year, dts.month)
        return out
    elif field == "is_leap_year":
        return isleapyear_arr(get_date_field(dtindex, "Y", reso=reso))
 
    raise ValueError(f"Field {field} not supported")
 
 
@cython.wraparound(False)
@cython.boundscheck(False)
def get_timedelta_field(
    const int64_t[:] tdindex,
    str field,
    NPY_DATETIMEUNIT reso=NPY_FR_ns,
):
    """
    Given a int64-based timedelta index, extract the days, hrs, sec.,
    field and return an array of these values.
    """
    cdef:
        Py_ssize_t i, count = len(tdindex)
        ndarray[int32_t] out
        pandas_timedeltastruct tds
 
    out = np.empty(count, dtype="i4")
 
    if field == "seconds":
        with nogil:
            for i in range(count):
                if tdindex[i] == NPY_NAT:
                    out[i] = -1
                    continue
 
                pandas_timedelta_to_timedeltastruct(tdindex[i], reso, &tds)
                out[i] = tds.seconds
        return out
 
    elif field == "microseconds":
        with nogil:
            for i in range(count):
                if tdindex[i] == NPY_NAT:
                    out[i] = -1
                    continue
 
                pandas_timedelta_to_timedeltastruct(tdindex[i], reso, &tds)
                out[i] = tds.microseconds
        return out
 
    elif field == "nanoseconds":
        with nogil:
            for i in range(count):
                if tdindex[i] == NPY_NAT:
                    out[i] = -1
                    continue
 
                pandas_timedelta_to_timedeltastruct(tdindex[i], reso, &tds)
                out[i] = tds.nanoseconds
        return out
 
    raise ValueError(f"Field {field} not supported")
 
 
@cython.wraparound(False)
@cython.boundscheck(False)
def get_timedelta_days(
    const int64_t[:] tdindex,
    NPY_DATETIMEUNIT reso=NPY_FR_ns,
):
    """
    Given a int64-based timedelta index, extract the days,
    field and return an array of these values.
    """
    cdef:
        Py_ssize_t i, count = len(tdindex)
        ndarray[int64_t] out
        pandas_timedeltastruct tds
 
    out = np.empty(count, dtype="i8")
 
    with nogil:
        for i in range(count):
            if tdindex[i] == NPY_NAT:
                out[i] = -1
                continue
 
            pandas_timedelta_to_timedeltastruct(tdindex[i], reso, &tds)
            out[i] = tds.days
    return out
 
 
cpdef isleapyear_arr(ndarray years):
    """vectorized version of isleapyear; NaT evaluates as False"""
    cdef:
        ndarray[int8_t] out
 
    out = np.zeros(len(years), dtype="int8")
    out[np.logical_or(years % 400 == 0,
                      np.logical_and(years % 4 == 0,
                                     years % 100 > 0))] = 1
    return out.view(bool)
 
 
@cython.wraparound(False)
@cython.boundscheck(False)
def build_isocalendar_sarray(const int64_t[:] dtindex, NPY_DATETIMEUNIT reso):
    """
    Given a int64-based datetime array, return the ISO 8601 year, week, and day
    as a structured array.
    """
    cdef:
        Py_ssize_t i, count = len(dtindex)
        npy_datetimestruct dts
        ndarray[uint32_t] iso_years, iso_weeks, days
        iso_calendar_t ret_val
 
    sa_dtype = [
        ("year", "u4"),
        ("week", "u4"),
        ("day", "u4"),
    ]
 
    out = np.empty(count, dtype=sa_dtype)
 
    iso_years = out["year"]
    iso_weeks = out["week"]
    days = out["day"]
 
    with nogil:
        for i in range(count):
            if dtindex[i] == NPY_NAT:
                ret_val = 0, 0, 0
            else:
                pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
                ret_val = get_iso_calendar(dts.year, dts.month, dts.day)
 
            iso_years[i] = ret_val[0]
            iso_weeks[i] = ret_val[1]
            days[i] = ret_val[2]
    return out
 
 
def _get_locale_names(name_type: str, locale: object = None):
    """
    Returns an array of localized day or month names.
 
    Parameters
    ----------
    name_type : str
        Attribute of LocaleTime() in which to return localized names.
    locale : str
 
    Returns
    -------
    list of locale names
    """
    with set_locale(locale, LC_TIME):
        return getattr(LocaleTime(), name_type)
 
 
# ---------------------------------------------------------------------
# Rounding
 
 
class RoundTo:
    """
    enumeration defining the available rounding modes
 
    Attributes
    ----------
    MINUS_INFTY
        round towards -∞, or floor [2]_
    PLUS_INFTY
        round towards +∞, or ceil [3]_
    NEAREST_HALF_EVEN
        round to nearest, tie-break half to even [6]_
    NEAREST_HALF_MINUS_INFTY
        round to nearest, tie-break half to -∞ [5]_
    NEAREST_HALF_PLUS_INFTY
        round to nearest, tie-break half to +∞ [4]_
 
 
    References
    ----------
    .. [1] "Rounding - Wikipedia"
           https://en.wikipedia.org/wiki/Rounding
    .. [2] "Rounding down"
           https://en.wikipedia.org/wiki/Rounding#Rounding_down
    .. [3] "Rounding up"
           https://en.wikipedia.org/wiki/Rounding#Rounding_up
    .. [4] "Round half up"
           https://en.wikipedia.org/wiki/Rounding#Round_half_up
    .. [5] "Round half down"
           https://en.wikipedia.org/wiki/Rounding#Round_half_down
    .. [6] "Round half to even"
           https://en.wikipedia.org/wiki/Rounding#Round_half_to_even
    """
    @property
    def MINUS_INFTY(self) -> int:
        return 0
 
    @property
    def PLUS_INFTY(self) -> int:
        return 1
 
    @property
    def NEAREST_HALF_EVEN(self) -> int:
        return 2
 
    @property
    def NEAREST_HALF_PLUS_INFTY(self) -> int:
        return 3
 
    @property
    def NEAREST_HALF_MINUS_INFTY(self) -> int:
        return 4
 
 
cdef ndarray[int64_t] _floor_int64(const int64_t[:] values, int64_t unit):
    cdef:
        Py_ssize_t i, n = len(values)
        ndarray[int64_t] result = np.empty(n, dtype="i8")
        int64_t res, value
 
    with cython.overflowcheck(True):
        for i in range(n):
            value = values[i]
            if value == NPY_NAT:
                res = NPY_NAT
            else:
                res = value - value % unit
            result[i] = res
 
    return result
 
 
cdef ndarray[int64_t] _ceil_int64(const int64_t[:] values, int64_t unit):
    cdef:
        Py_ssize_t i, n = len(values)
        ndarray[int64_t] result = np.empty(n, dtype="i8")
        int64_t res, value
 
    with cython.overflowcheck(True):
        for i in range(n):
            value = values[i]
 
            if value == NPY_NAT:
                res = NPY_NAT
            else:
                remainder = value % unit
                if remainder == 0:
                    res = value
                else:
                    res = value + (unit - remainder)
 
            result[i] = res
 
    return result
 
 
cdef ndarray[int64_t] _rounddown_int64(values, int64_t unit):
    return _ceil_int64(values - unit // 2, unit)
 
 
cdef ndarray[int64_t] _roundup_int64(values, int64_t unit):
    return _floor_int64(values + unit // 2, unit)
 
 
def round_nsint64(values: np.ndarray, mode: RoundTo, nanos: int) -> np.ndarray:
    """
    Applies rounding mode at given frequency
 
    Parameters
    ----------
    values : np.ndarray[int64_t]`
    mode : instance of `RoundTo` enumeration
    nanos : np.int64
        Freq to round to, expressed in nanoseconds
 
    Returns
    -------
    np.ndarray[int64_t]
    """
    cdef:
        int64_t unit = nanos
 
    if mode == RoundTo.MINUS_INFTY:
        return _floor_int64(values, unit)
    elif mode == RoundTo.PLUS_INFTY:
        return _ceil_int64(values, unit)
    elif mode == RoundTo.NEAREST_HALF_MINUS_INFTY:
        return _rounddown_int64(values, unit)
    elif mode == RoundTo.NEAREST_HALF_PLUS_INFTY:
        return _roundup_int64(values, unit)
    elif mode == RoundTo.NEAREST_HALF_EVEN:
        # for odd unit there is no need of a tie break
        if unit % 2:
            return _rounddown_int64(values, unit)
        quotient, remainder = np.divmod(values, unit)
        mask = np.logical_or(
            remainder > (unit // 2),
            np.logical_and(remainder == (unit // 2), quotient % 2)
        )
        quotient[mask] += 1
        return quotient * unit
 
    # if/elif above should catch all rounding modes defined in enum 'RoundTo':
    # if flow of control arrives here, it is a bug
    raise ValueError("round_nsint64 called with an unrecognized rounding mode")