1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
| from collections.abc import Callable, Sequence
| from typing import TypeVar, Any, overload, SupportsIndex, Protocol
|
| from numpy import (
| generic,
| integer,
| ufunc,
| bool_,
| unsignedinteger,
| signedinteger,
| floating,
| complexfloating,
| object_,
| )
|
| from numpy._typing import (
| ArrayLike,
| NDArray,
| _ShapeLike,
| _ArrayLike,
| _ArrayLikeBool_co,
| _ArrayLikeUInt_co,
| _ArrayLikeInt_co,
| _ArrayLikeFloat_co,
| _ArrayLikeComplex_co,
| _ArrayLikeObject_co,
| )
|
| from numpy.core.shape_base import vstack
|
| _SCT = TypeVar("_SCT", bound=generic)
|
| # The signatures of `__array_wrap__` and `__array_prepare__` are the same;
| # give them unique names for the sake of clarity
| class _ArrayWrap(Protocol):
| def __call__(
| self,
| array: NDArray[Any],
| context: None | tuple[ufunc, tuple[Any, ...], int] = ...,
| /,
| ) -> Any: ...
|
| class _ArrayPrepare(Protocol):
| def __call__(
| self,
| array: NDArray[Any],
| context: None | tuple[ufunc, tuple[Any, ...], int] = ...,
| /,
| ) -> Any: ...
|
| class _SupportsArrayWrap(Protocol):
| @property
| def __array_wrap__(self) -> _ArrayWrap: ...
|
| class _SupportsArrayPrepare(Protocol):
| @property
| def __array_prepare__(self) -> _ArrayPrepare: ...
|
| __all__: list[str]
|
| row_stack = vstack
|
| def take_along_axis(
| arr: _SCT | NDArray[_SCT],
| indices: NDArray[integer[Any]],
| axis: None | int,
| ) -> NDArray[_SCT]: ...
|
| def put_along_axis(
| arr: NDArray[_SCT],
| indices: NDArray[integer[Any]],
| values: ArrayLike,
| axis: None | int,
| ) -> None: ...
|
| # TODO: Use PEP 612 `ParamSpec` once mypy supports `Concatenate`
| # xref python/mypy#8645
| @overload
| def apply_along_axis(
| func1d: Callable[..., _ArrayLike[_SCT]],
| axis: SupportsIndex,
| arr: ArrayLike,
| *args: Any,
| **kwargs: Any,
| ) -> NDArray[_SCT]: ...
| @overload
| def apply_along_axis(
| func1d: Callable[..., ArrayLike],
| axis: SupportsIndex,
| arr: ArrayLike,
| *args: Any,
| **kwargs: Any,
| ) -> NDArray[Any]: ...
|
| def apply_over_axes(
| func: Callable[[NDArray[Any], int], NDArray[_SCT]],
| a: ArrayLike,
| axes: int | Sequence[int],
| ) -> NDArray[_SCT]: ...
|
| @overload
| def expand_dims(
| a: _ArrayLike[_SCT],
| axis: _ShapeLike,
| ) -> NDArray[_SCT]: ...
| @overload
| def expand_dims(
| a: ArrayLike,
| axis: _ShapeLike,
| ) -> NDArray[Any]: ...
|
| @overload
| def column_stack(tup: Sequence[_ArrayLike[_SCT]]) -> NDArray[_SCT]: ...
| @overload
| def column_stack(tup: Sequence[ArrayLike]) -> NDArray[Any]: ...
|
| @overload
| def dstack(tup: Sequence[_ArrayLike[_SCT]]) -> NDArray[_SCT]: ...
| @overload
| def dstack(tup: Sequence[ArrayLike]) -> NDArray[Any]: ...
|
| @overload
| def array_split(
| ary: _ArrayLike[_SCT],
| indices_or_sections: _ShapeLike,
| axis: SupportsIndex = ...,
| ) -> list[NDArray[_SCT]]: ...
| @overload
| def array_split(
| ary: ArrayLike,
| indices_or_sections: _ShapeLike,
| axis: SupportsIndex = ...,
| ) -> list[NDArray[Any]]: ...
|
| @overload
| def split(
| ary: _ArrayLike[_SCT],
| indices_or_sections: _ShapeLike,
| axis: SupportsIndex = ...,
| ) -> list[NDArray[_SCT]]: ...
| @overload
| def split(
| ary: ArrayLike,
| indices_or_sections: _ShapeLike,
| axis: SupportsIndex = ...,
| ) -> list[NDArray[Any]]: ...
|
| @overload
| def hsplit(
| ary: _ArrayLike[_SCT],
| indices_or_sections: _ShapeLike,
| ) -> list[NDArray[_SCT]]: ...
| @overload
| def hsplit(
| ary: ArrayLike,
| indices_or_sections: _ShapeLike,
| ) -> list[NDArray[Any]]: ...
|
| @overload
| def vsplit(
| ary: _ArrayLike[_SCT],
| indices_or_sections: _ShapeLike,
| ) -> list[NDArray[_SCT]]: ...
| @overload
| def vsplit(
| ary: ArrayLike,
| indices_or_sections: _ShapeLike,
| ) -> list[NDArray[Any]]: ...
|
| @overload
| def dsplit(
| ary: _ArrayLike[_SCT],
| indices_or_sections: _ShapeLike,
| ) -> list[NDArray[_SCT]]: ...
| @overload
| def dsplit(
| ary: ArrayLike,
| indices_or_sections: _ShapeLike,
| ) -> list[NDArray[Any]]: ...
|
| @overload
| def get_array_prepare(*args: _SupportsArrayPrepare) -> _ArrayPrepare: ...
| @overload
| def get_array_prepare(*args: object) -> None | _ArrayPrepare: ...
|
| @overload
| def get_array_wrap(*args: _SupportsArrayWrap) -> _ArrayWrap: ...
| @overload
| def get_array_wrap(*args: object) -> None | _ArrayWrap: ...
|
| @overload
| def kron(a: _ArrayLikeBool_co, b: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
| @overload
| def kron(a: _ArrayLikeUInt_co, b: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
| @overload
| def kron(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
| @overload
| def kron(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
| @overload
| def kron(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
| @overload
| def kron(a: _ArrayLikeObject_co, b: Any) -> NDArray[object_]: ...
| @overload
| def kron(a: Any, b: _ArrayLikeObject_co) -> NDArray[object_]: ...
|
| @overload
| def tile(
| A: _ArrayLike[_SCT],
| reps: int | Sequence[int],
| ) -> NDArray[_SCT]: ...
| @overload
| def tile(
| A: ArrayLike,
| reps: int | Sequence[int],
| ) -> NDArray[Any]: ...
|
|