zmc
2023-12-22 9fdbf60165db0400c2e8e6be2dc6e88138ac719a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
"""SQL io tests
 
The SQL tests are broken down in different classes:
 
- `PandasSQLTest`: base class with common methods for all test classes
- Tests for the public API (only tests with sqlite3)
    - `_TestSQLApi` base class
    - `TestSQLApi`: test the public API with sqlalchemy engine
    - `TestSQLiteFallbackApi`: test the public API with a sqlite DBAPI
      connection
- Tests for the different SQL flavors (flavor specific type conversions)
    - Tests for the sqlalchemy mode: `_TestSQLAlchemy` is the base class with
      common methods. The different tested flavors (sqlite3, MySQL,
      PostgreSQL) derive from the base class
    - Tests for the fallback mode (`TestSQLiteFallback`)
 
"""
from __future__ import annotations
 
import contextlib
from contextlib import closing
import csv
from datetime import (
    date,
    datetime,
    time,
    timedelta,
)
from io import StringIO
from pathlib import Path
import sqlite3
 
import numpy as np
import pytest
 
from pandas._libs import lib
import pandas.util._test_decorators as td
 
from pandas.core.dtypes.common import (
    is_datetime64_dtype,
    is_datetime64tz_dtype,
)
 
import pandas as pd
from pandas import (
    DataFrame,
    Index,
    MultiIndex,
    Series,
    Timestamp,
    concat,
    date_range,
    isna,
    to_datetime,
    to_timedelta,
)
import pandas._testing as tm
from pandas.core.arrays import (
    ArrowStringArray,
    StringArray,
)
from pandas.util.version import Version
 
from pandas.io import sql
from pandas.io.sql import (
    SQLAlchemyEngine,
    SQLDatabase,
    SQLiteDatabase,
    get_engine,
    pandasSQL_builder,
    read_sql_query,
    read_sql_table,
)
 
try:
    import sqlalchemy
 
    SQLALCHEMY_INSTALLED = True
except ImportError:
    SQLALCHEMY_INSTALLED = False
 
SQL_STRINGS = {
    "read_parameters": {
        "sqlite": "SELECT * FROM iris WHERE Name=? AND SepalLength=?",
        "mysql": "SELECT * FROM iris WHERE `Name`=%s AND `SepalLength`=%s",
        "postgresql": 'SELECT * FROM iris WHERE "Name"=%s AND "SepalLength"=%s',
    },
    "read_named_parameters": {
        "sqlite": """
                SELECT * FROM iris WHERE Name=:name AND SepalLength=:length
                """,
        "mysql": """
                SELECT * FROM iris WHERE
                `Name`=%(name)s AND `SepalLength`=%(length)s
                """,
        "postgresql": """
                SELECT * FROM iris WHERE
                "Name"=%(name)s AND "SepalLength"=%(length)s
                """,
    },
    "read_no_parameters_with_percent": {
        "sqlite": "SELECT * FROM iris WHERE Name LIKE '%'",
        "mysql": "SELECT * FROM iris WHERE `Name` LIKE '%'",
        "postgresql": "SELECT * FROM iris WHERE \"Name\" LIKE '%'",
    },
}
 
 
def iris_table_metadata(dialect: str):
    from sqlalchemy import (
        REAL,
        Column,
        Float,
        MetaData,
        String,
        Table,
    )
 
    dtype = Float if dialect == "postgresql" else REAL
    metadata = MetaData()
    iris = Table(
        "iris",
        metadata,
        Column("SepalLength", dtype),
        Column("SepalWidth", dtype),
        Column("PetalLength", dtype),
        Column("PetalWidth", dtype),
        Column("Name", String(200)),
    )
    return iris
 
 
def create_and_load_iris_sqlite3(conn: sqlite3.Connection, iris_file: Path):
    cur = conn.cursor()
    stmt = """CREATE TABLE iris (
            "SepalLength" REAL,
            "SepalWidth" REAL,
            "PetalLength" REAL,
            "PetalWidth" REAL,
            "Name" TEXT
        )"""
    cur.execute(stmt)
    with iris_file.open(newline=None) as csvfile:
        reader = csv.reader(csvfile)
        next(reader)
        stmt = "INSERT INTO iris VALUES(?, ?, ?, ?, ?)"
        cur.executemany(stmt, reader)
 
 
def create_and_load_iris(conn, iris_file: Path, dialect: str):
    from sqlalchemy import insert
    from sqlalchemy.engine import Engine
 
    iris = iris_table_metadata(dialect)
 
    with iris_file.open(newline=None) as csvfile:
        reader = csv.reader(csvfile)
        header = next(reader)
        params = [dict(zip(header, row)) for row in reader]
        stmt = insert(iris).values(params)
        if isinstance(conn, Engine):
            with conn.connect() as conn:
                with conn.begin():
                    iris.drop(conn, checkfirst=True)
                    iris.create(bind=conn)
                    conn.execute(stmt)
        else:
            with conn.begin():
                iris.drop(conn, checkfirst=True)
                iris.create(bind=conn)
                conn.execute(stmt)
 
 
def create_and_load_iris_view(conn):
    stmt = "CREATE VIEW iris_view AS SELECT * FROM iris"
    if isinstance(conn, sqlite3.Connection):
        cur = conn.cursor()
        cur.execute(stmt)
    else:
        from sqlalchemy import text
        from sqlalchemy.engine import Engine
 
        stmt = text(stmt)
        if isinstance(conn, Engine):
            with conn.connect() as conn:
                with conn.begin():
                    conn.execute(stmt)
        else:
            with conn.begin():
                conn.execute(stmt)
 
 
def types_table_metadata(dialect: str):
    from sqlalchemy import (
        TEXT,
        Boolean,
        Column,
        DateTime,
        Float,
        Integer,
        MetaData,
        Table,
    )
 
    date_type = TEXT if dialect == "sqlite" else DateTime
    bool_type = Integer if dialect == "sqlite" else Boolean
    metadata = MetaData()
    types = Table(
        "types",
        metadata,
        Column("TextCol", TEXT),
        Column("DateCol", date_type),
        Column("IntDateCol", Integer),
        Column("IntDateOnlyCol", Integer),
        Column("FloatCol", Float),
        Column("IntCol", Integer),
        Column("BoolCol", bool_type),
        Column("IntColWithNull", Integer),
        Column("BoolColWithNull", bool_type),
    )
    if dialect == "postgresql":
        types.append_column(Column("DateColWithTz", DateTime(timezone=True)))
    return types
 
 
def create_and_load_types_sqlite3(conn: sqlite3.Connection, types_data: list[dict]):
    cur = conn.cursor()
    stmt = """CREATE TABLE types (
                    "TextCol" TEXT,
                    "DateCol" TEXT,
                    "IntDateCol" INTEGER,
                    "IntDateOnlyCol" INTEGER,
                    "FloatCol" REAL,
                    "IntCol" INTEGER,
                    "BoolCol" INTEGER,
                    "IntColWithNull" INTEGER,
                    "BoolColWithNull" INTEGER
                )"""
    cur.execute(stmt)
 
    stmt = """
            INSERT INTO types
            VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?)
            """
    cur.executemany(stmt, types_data)
 
 
def create_and_load_types(conn, types_data: list[dict], dialect: str):
    from sqlalchemy import insert
    from sqlalchemy.engine import Engine
 
    types = types_table_metadata(dialect)
 
    stmt = insert(types).values(types_data)
    if isinstance(conn, Engine):
        with conn.connect() as conn:
            with conn.begin():
                types.drop(conn, checkfirst=True)
                types.create(bind=conn)
                conn.execute(stmt)
    else:
        with conn.begin():
            types.drop(conn, checkfirst=True)
            types.create(bind=conn)
            conn.execute(stmt)
 
 
def check_iris_frame(frame: DataFrame):
    pytype = frame.dtypes[0].type
    row = frame.iloc[0]
    assert issubclass(pytype, np.floating)
    tm.equalContents(row.values, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"])
    assert frame.shape in ((150, 5), (8, 5))
 
 
def count_rows(conn, table_name: str):
    stmt = f"SELECT count(*) AS count_1 FROM {table_name}"
    if isinstance(conn, sqlite3.Connection):
        cur = conn.cursor()
        return cur.execute(stmt).fetchone()[0]
    else:
        from sqlalchemy import create_engine
        from sqlalchemy.engine import Engine
 
        if isinstance(conn, str):
            try:
                engine = create_engine(conn)
                with engine.connect() as conn:
                    return conn.exec_driver_sql(stmt).scalar_one()
            finally:
                engine.dispose()
        elif isinstance(conn, Engine):
            with conn.connect() as conn:
                return conn.exec_driver_sql(stmt).scalar_one()
        else:
            return conn.exec_driver_sql(stmt).scalar_one()
 
 
@pytest.fixture
def iris_path(datapath):
    iris_path = datapath("io", "data", "csv", "iris.csv")
    return Path(iris_path)
 
 
@pytest.fixture
def types_data():
    return [
        {
            "TextCol": "first",
            "DateCol": "2000-01-03 00:00:00",
            "IntDateCol": 535852800,
            "IntDateOnlyCol": 20101010,
            "FloatCol": 10.10,
            "IntCol": 1,
            "BoolCol": False,
            "IntColWithNull": 1,
            "BoolColWithNull": False,
            "DateColWithTz": "2000-01-01 00:00:00-08:00",
        },
        {
            "TextCol": "first",
            "DateCol": "2000-01-04 00:00:00",
            "IntDateCol": 1356998400,
            "IntDateOnlyCol": 20101212,
            "FloatCol": 10.10,
            "IntCol": 1,
            "BoolCol": False,
            "IntColWithNull": None,
            "BoolColWithNull": None,
            "DateColWithTz": "2000-06-01 00:00:00-07:00",
        },
    ]
 
 
@pytest.fixture
def types_data_frame(types_data):
    dtypes = {
        "TextCol": "str",
        "DateCol": "str",
        "IntDateCol": "int64",
        "IntDateOnlyCol": "int64",
        "FloatCol": "float",
        "IntCol": "int64",
        "BoolCol": "int64",
        "IntColWithNull": "float",
        "BoolColWithNull": "float",
    }
    df = DataFrame(types_data)
    return df[dtypes.keys()].astype(dtypes)
 
 
@pytest.fixture
def test_frame1():
    columns = ["index", "A", "B", "C", "D"]
    data = [
        (
            "2000-01-03 00:00:00",
            0.980268513777,
            3.68573087906,
            -0.364216805298,
            -1.15973806169,
        ),
        (
            "2000-01-04 00:00:00",
            1.04791624281,
            -0.0412318367011,
            -0.16181208307,
            0.212549316967,
        ),
        (
            "2000-01-05 00:00:00",
            0.498580885705,
            0.731167677815,
            -0.537677223318,
            1.34627041952,
        ),
        (
            "2000-01-06 00:00:00",
            1.12020151869,
            1.56762092543,
            0.00364077397681,
            0.67525259227,
        ),
    ]
    return DataFrame(data, columns=columns)
 
 
@pytest.fixture
def test_frame3():
    columns = ["index", "A", "B"]
    data = [
        ("2000-01-03 00:00:00", 2**31 - 1, -1.987670),
        ("2000-01-04 00:00:00", -29, -0.0412318367011),
        ("2000-01-05 00:00:00", 20000, 0.731167677815),
        ("2000-01-06 00:00:00", -290867, 1.56762092543),
    ]
    return DataFrame(data, columns=columns)
 
 
@pytest.fixture
def mysql_pymysql_engine(iris_path, types_data):
    sqlalchemy = pytest.importorskip("sqlalchemy")
    pymysql = pytest.importorskip("pymysql")
    engine = sqlalchemy.create_engine(
        "mysql+pymysql://root@localhost:3306/pandas",
        connect_args={"client_flag": pymysql.constants.CLIENT.MULTI_STATEMENTS},
        poolclass=sqlalchemy.pool.NullPool,
    )
    insp = sqlalchemy.inspect(engine)
    if not insp.has_table("iris"):
        create_and_load_iris(engine, iris_path, "mysql")
    if not insp.has_table("types"):
        for entry in types_data:
            entry.pop("DateColWithTz")
        create_and_load_types(engine, types_data, "mysql")
    yield engine
    with engine.connect() as conn:
        with conn.begin():
            stmt = sqlalchemy.text("DROP TABLE IF EXISTS test_frame;")
            conn.execute(stmt)
    engine.dispose()
 
 
@pytest.fixture
def mysql_pymysql_conn(mysql_pymysql_engine):
    with mysql_pymysql_engine.connect() as conn:
        yield conn
 
 
@pytest.fixture
def postgresql_psycopg2_engine(iris_path, types_data):
    sqlalchemy = pytest.importorskip("sqlalchemy")
    pytest.importorskip("psycopg2")
    engine = sqlalchemy.create_engine(
        "postgresql+psycopg2://postgres:postgres@localhost:5432/pandas",
        poolclass=sqlalchemy.pool.NullPool,
    )
    insp = sqlalchemy.inspect(engine)
    if not insp.has_table("iris"):
        create_and_load_iris(engine, iris_path, "postgresql")
    if not insp.has_table("types"):
        create_and_load_types(engine, types_data, "postgresql")
    yield engine
    with engine.connect() as conn:
        with conn.begin():
            stmt = sqlalchemy.text("DROP TABLE IF EXISTS test_frame;")
            conn.execute(stmt)
    engine.dispose()
 
 
@pytest.fixture
def postgresql_psycopg2_conn(postgresql_psycopg2_engine):
    with postgresql_psycopg2_engine.connect() as conn:
        yield conn
 
 
@pytest.fixture
def sqlite_str():
    pytest.importorskip("sqlalchemy")
    with tm.ensure_clean() as name:
        yield "sqlite:///" + name
 
 
@pytest.fixture
def sqlite_engine(sqlite_str):
    sqlalchemy = pytest.importorskip("sqlalchemy")
    engine = sqlalchemy.create_engine(sqlite_str, poolclass=sqlalchemy.pool.NullPool)
    yield engine
    engine.dispose()
 
 
@pytest.fixture
def sqlite_conn(sqlite_engine):
    with sqlite_engine.connect() as conn:
        yield conn
 
 
@pytest.fixture
def sqlite_iris_str(sqlite_str, iris_path):
    sqlalchemy = pytest.importorskip("sqlalchemy")
    engine = sqlalchemy.create_engine(sqlite_str)
    create_and_load_iris(engine, iris_path, "sqlite")
    engine.dispose()
    return sqlite_str
 
 
@pytest.fixture
def sqlite_iris_engine(sqlite_engine, iris_path):
    create_and_load_iris(sqlite_engine, iris_path, "sqlite")
    return sqlite_engine
 
 
@pytest.fixture
def sqlite_iris_conn(sqlite_iris_engine):
    with sqlite_iris_engine.connect() as conn:
        yield conn
 
 
@pytest.fixture
def sqlite_buildin():
    with contextlib.closing(sqlite3.connect(":memory:")) as closing_conn:
        with closing_conn as conn:
            yield conn
 
 
@pytest.fixture
def sqlite_buildin_iris(sqlite_buildin, iris_path):
    create_and_load_iris_sqlite3(sqlite_buildin, iris_path)
    return sqlite_buildin
 
 
mysql_connectable = [
    "mysql_pymysql_engine",
    "mysql_pymysql_conn",
]
 
 
postgresql_connectable = [
    "postgresql_psycopg2_engine",
    "postgresql_psycopg2_conn",
]
 
sqlite_connectable = [
    "sqlite_engine",
    "sqlite_conn",
    "sqlite_str",
]
 
sqlite_iris_connectable = [
    "sqlite_iris_engine",
    "sqlite_iris_conn",
    "sqlite_iris_str",
]
 
sqlalchemy_connectable = mysql_connectable + postgresql_connectable + sqlite_connectable
 
sqlalchemy_connectable_iris = (
    mysql_connectable + postgresql_connectable + sqlite_iris_connectable
)
 
all_connectable = sqlalchemy_connectable + ["sqlite_buildin"]
 
all_connectable_iris = sqlalchemy_connectable_iris + ["sqlite_buildin_iris"]
 
 
@pytest.mark.db
@pytest.mark.parametrize("conn", all_connectable)
def test_dataframe_to_sql(conn, test_frame1, request):
    # GH 51086 if conn is sqlite_engine
    conn = request.getfixturevalue(conn)
    test_frame1.to_sql("test", conn, if_exists="append", index=False)
 
 
@pytest.mark.db
@pytest.mark.parametrize("conn", all_connectable)
def test_dataframe_to_sql_arrow_dtypes(conn, request):
    # GH 52046
    pytest.importorskip("pyarrow")
    df = DataFrame(
        {
            "int": pd.array([1], dtype="int8[pyarrow]"),
            "datetime": pd.array(
                [datetime(2023, 1, 1)], dtype="timestamp[ns][pyarrow]"
            ),
            "timedelta": pd.array([timedelta(1)], dtype="duration[ns][pyarrow]"),
            "string": pd.array(["a"], dtype="string[pyarrow]"),
        }
    )
    conn = request.getfixturevalue(conn)
    with tm.assert_produces_warning(UserWarning, match="the 'timedelta'"):
        df.to_sql("test_arrow", conn, if_exists="replace", index=False)
 
 
@pytest.mark.db
@pytest.mark.parametrize("conn", all_connectable)
def test_dataframe_to_sql_arrow_dtypes_missing(conn, request, nulls_fixture):
    # GH 52046
    pytest.importorskip("pyarrow")
    df = DataFrame(
        {
            "datetime": pd.array(
                [datetime(2023, 1, 1), nulls_fixture], dtype="timestamp[ns][pyarrow]"
            ),
        }
    )
    conn = request.getfixturevalue(conn)
    df.to_sql("test_arrow", conn, if_exists="replace", index=False)
 
 
@pytest.mark.db
@pytest.mark.parametrize("conn", all_connectable)
@pytest.mark.parametrize("method", [None, "multi"])
def test_to_sql(conn, method, test_frame1, request):
    conn = request.getfixturevalue(conn)
    with pandasSQL_builder(conn, need_transaction=True) as pandasSQL:
        pandasSQL.to_sql(test_frame1, "test_frame", method=method)
        assert pandasSQL.has_table("test_frame")
    assert count_rows(conn, "test_frame") == len(test_frame1)
 
 
@pytest.mark.db
@pytest.mark.parametrize("conn", all_connectable)
@pytest.mark.parametrize("mode, num_row_coef", [("replace", 1), ("append", 2)])
def test_to_sql_exist(conn, mode, num_row_coef, test_frame1, request):
    conn = request.getfixturevalue(conn)
    with pandasSQL_builder(conn, need_transaction=True) as pandasSQL:
        pandasSQL.to_sql(test_frame1, "test_frame", if_exists="fail")
        pandasSQL.to_sql(test_frame1, "test_frame", if_exists=mode)
        assert pandasSQL.has_table("test_frame")
    assert count_rows(conn, "test_frame") == num_row_coef * len(test_frame1)
 
 
@pytest.mark.db
@pytest.mark.parametrize("conn", all_connectable)
def test_to_sql_exist_fail(conn, test_frame1, request):
    conn = request.getfixturevalue(conn)
    with pandasSQL_builder(conn, need_transaction=True) as pandasSQL:
        pandasSQL.to_sql(test_frame1, "test_frame", if_exists="fail")
        assert pandasSQL.has_table("test_frame")
 
        msg = "Table 'test_frame' already exists"
        with pytest.raises(ValueError, match=msg):
            pandasSQL.to_sql(test_frame1, "test_frame", if_exists="fail")
 
 
@pytest.mark.db
@pytest.mark.parametrize("conn", all_connectable_iris)
def test_read_iris_query(conn, request):
    conn = request.getfixturevalue(conn)
    iris_frame = read_sql_query("SELECT * FROM iris", conn)
    check_iris_frame(iris_frame)
    iris_frame = pd.read_sql("SELECT * FROM iris", conn)
    check_iris_frame(iris_frame)
    iris_frame = pd.read_sql("SELECT * FROM iris where 0=1", conn)
    assert iris_frame.shape == (0, 5)
    assert "SepalWidth" in iris_frame.columns
 
 
@pytest.mark.db
@pytest.mark.parametrize("conn", all_connectable_iris)
def test_read_iris_query_chunksize(conn, request):
    conn = request.getfixturevalue(conn)
    iris_frame = concat(read_sql_query("SELECT * FROM iris", conn, chunksize=7))
    check_iris_frame(iris_frame)
    iris_frame = concat(pd.read_sql("SELECT * FROM iris", conn, chunksize=7))
    check_iris_frame(iris_frame)
    iris_frame = concat(pd.read_sql("SELECT * FROM iris where 0=1", conn, chunksize=7))
    assert iris_frame.shape == (0, 5)
    assert "SepalWidth" in iris_frame.columns
 
 
@pytest.mark.db
@pytest.mark.parametrize("conn", sqlalchemy_connectable_iris)
def test_read_iris_query_expression_with_parameter(conn, request):
    conn = request.getfixturevalue(conn)
    from sqlalchemy import (
        MetaData,
        Table,
        create_engine,
        select,
    )
 
    metadata = MetaData()
    autoload_con = create_engine(conn) if isinstance(conn, str) else conn
    iris = Table("iris", metadata, autoload_with=autoload_con)
    iris_frame = read_sql_query(
        select(iris), conn, params={"name": "Iris-setosa", "length": 5.1}
    )
    check_iris_frame(iris_frame)
    if isinstance(conn, str):
        autoload_con.dispose()
 
 
@pytest.mark.db
@pytest.mark.parametrize("conn", all_connectable_iris)
def test_read_iris_query_string_with_parameter(conn, request):
    for db, query in SQL_STRINGS["read_parameters"].items():
        if db in conn:
            break
    else:
        raise KeyError(f"No part of {conn} found in SQL_STRINGS['read_parameters']")
    conn = request.getfixturevalue(conn)
    iris_frame = read_sql_query(query, conn, params=("Iris-setosa", 5.1))
    check_iris_frame(iris_frame)
 
 
@pytest.mark.db
@pytest.mark.parametrize("conn", sqlalchemy_connectable_iris)
def test_read_iris_table(conn, request):
    # GH 51015 if conn = sqlite_iris_str
    conn = request.getfixturevalue(conn)
    iris_frame = read_sql_table("iris", conn)
    check_iris_frame(iris_frame)
    iris_frame = pd.read_sql("iris", conn)
    check_iris_frame(iris_frame)
 
 
@pytest.mark.db
@pytest.mark.parametrize("conn", sqlalchemy_connectable_iris)
def test_read_iris_table_chunksize(conn, request):
    conn = request.getfixturevalue(conn)
    iris_frame = concat(read_sql_table("iris", conn, chunksize=7))
    check_iris_frame(iris_frame)
    iris_frame = concat(pd.read_sql("iris", conn, chunksize=7))
    check_iris_frame(iris_frame)
 
 
@pytest.mark.db
@pytest.mark.parametrize("conn", sqlalchemy_connectable)
def test_to_sql_callable(conn, test_frame1, request):
    conn = request.getfixturevalue(conn)
 
    check = []  # used to double check function below is really being used
 
    def sample(pd_table, conn, keys, data_iter):
        check.append(1)
        data = [dict(zip(keys, row)) for row in data_iter]
        conn.execute(pd_table.table.insert(), data)
 
    with pandasSQL_builder(conn, need_transaction=True) as pandasSQL:
        pandasSQL.to_sql(test_frame1, "test_frame", method=sample)
        assert pandasSQL.has_table("test_frame")
    assert check == [1]
    assert count_rows(conn, "test_frame") == len(test_frame1)
 
 
@pytest.mark.db
@pytest.mark.parametrize("conn", mysql_connectable)
def test_default_type_conversion(conn, request):
    conn = request.getfixturevalue(conn)
    df = sql.read_sql_table("types", conn)
 
    assert issubclass(df.FloatCol.dtype.type, np.floating)
    assert issubclass(df.IntCol.dtype.type, np.integer)
 
    # MySQL has no real BOOL type (it's an alias for TINYINT)
    assert issubclass(df.BoolCol.dtype.type, np.integer)
 
    # Int column with NA values stays as float
    assert issubclass(df.IntColWithNull.dtype.type, np.floating)
 
    # Bool column with NA = int column with NA values => becomes float
    assert issubclass(df.BoolColWithNull.dtype.type, np.floating)
 
 
@pytest.mark.db
@pytest.mark.parametrize("conn", mysql_connectable)
def test_read_procedure(conn, request):
    conn = request.getfixturevalue(conn)
 
    # GH 7324
    # Although it is more an api test, it is added to the
    # mysql tests as sqlite does not have stored procedures
    from sqlalchemy import text
    from sqlalchemy.engine import Engine
 
    df = DataFrame({"a": [1, 2, 3], "b": [0.1, 0.2, 0.3]})
    df.to_sql("test_frame", conn, index=False)
 
    proc = """DROP PROCEDURE IF EXISTS get_testdb;
 
    CREATE PROCEDURE get_testdb ()
 
    BEGIN
        SELECT * FROM test_frame;
    END"""
    proc = text(proc)
    if isinstance(conn, Engine):
        with conn.connect() as engine_conn:
            with engine_conn.begin():
                engine_conn.execute(proc)
    else:
        with conn.begin():
            conn.execute(proc)
 
    res1 = sql.read_sql_query("CALL get_testdb();", conn)
    tm.assert_frame_equal(df, res1)
 
    # test delegation to read_sql_query
    res2 = sql.read_sql("CALL get_testdb();", conn)
    tm.assert_frame_equal(df, res2)
 
 
@pytest.mark.db
@pytest.mark.parametrize("conn", postgresql_connectable)
@pytest.mark.parametrize("expected_count", [2, "Success!"])
def test_copy_from_callable_insertion_method(conn, expected_count, request):
    # GH 8953
    # Example in io.rst found under _io.sql.method
    # not available in sqlite, mysql
    def psql_insert_copy(table, conn, keys, data_iter):
        # gets a DBAPI connection that can provide a cursor
        dbapi_conn = conn.connection
        with dbapi_conn.cursor() as cur:
            s_buf = StringIO()
            writer = csv.writer(s_buf)
            writer.writerows(data_iter)
            s_buf.seek(0)
 
            columns = ", ".join([f'"{k}"' for k in keys])
            if table.schema:
                table_name = f"{table.schema}.{table.name}"
            else:
                table_name = table.name
 
            sql_query = f"COPY {table_name} ({columns}) FROM STDIN WITH CSV"
            cur.copy_expert(sql=sql_query, file=s_buf)
        return expected_count
 
    conn = request.getfixturevalue(conn)
    expected = DataFrame({"col1": [1, 2], "col2": [0.1, 0.2], "col3": ["a", "n"]})
    result_count = expected.to_sql(
        "test_frame", conn, index=False, method=psql_insert_copy
    )
    # GH 46891
    if not isinstance(expected_count, int):
        assert result_count is None
    else:
        assert result_count == expected_count
    result = sql.read_sql_table("test_frame", conn)
    tm.assert_frame_equal(result, expected)
 
 
def test_execute_typeerror(sqlite_iris_engine):
    with pytest.raises(TypeError, match="pandas.io.sql.execute requires a connection"):
        with tm.assert_produces_warning(
            FutureWarning,
            match="`pandas.io.sql.execute` is deprecated and "
            "will be removed in the future version.",
        ):
            sql.execute("select * from iris", sqlite_iris_engine)
 
 
def test_execute_deprecated(sqlite_buildin_iris):
    # GH50185
    with tm.assert_produces_warning(
        FutureWarning,
        match="`pandas.io.sql.execute` is deprecated and "
        "will be removed in the future version.",
    ):
        sql.execute("select * from iris", sqlite_buildin_iris)
 
 
class MixInBase:
    def teardown_method(self):
        # if setup fails, there may not be a connection to close.
        if hasattr(self, "conn"):
            self.conn.close()
        # use a fresh connection to ensure we can drop all tables.
        try:
            conn = self.connect()
        except (sqlalchemy.exc.OperationalError, sqlite3.OperationalError):
            pass
        else:
            with conn:
                for view in self._get_all_views(conn):
                    self.drop_view(view, conn)
                for tbl in self._get_all_tables(conn):
                    self.drop_table(tbl, conn)
 
 
class SQLiteMixIn(MixInBase):
    def connect(self):
        return sqlite3.connect(":memory:")
 
    def drop_table(self, table_name, conn):
        conn.execute(f"DROP TABLE IF EXISTS {sql._get_valid_sqlite_name(table_name)}")
        conn.commit()
 
    def _get_all_tables(self, conn):
        c = conn.execute("SELECT name FROM sqlite_master WHERE type='table'")
        return [table[0] for table in c.fetchall()]
 
    def drop_view(self, view_name, conn):
        conn.execute(f"DROP VIEW IF EXISTS {sql._get_valid_sqlite_name(view_name)}")
        conn.commit()
 
    def _get_all_views(self, conn):
        c = conn.execute("SELECT name FROM sqlite_master WHERE type='view'")
        return [view[0] for view in c.fetchall()]
 
 
class SQLAlchemyMixIn(MixInBase):
    @classmethod
    def teardown_class(cls):
        cls.engine.dispose()
 
    def connect(self):
        return self.engine.connect()
 
    def drop_table(self, table_name, conn):
        if conn.in_transaction():
            conn.get_transaction().rollback()
        with conn.begin():
            sql.SQLDatabase(conn).drop_table(table_name)
 
    def _get_all_tables(self, conn):
        from sqlalchemy import inspect
 
        return inspect(conn).get_table_names()
 
    def drop_view(self, view_name, conn):
        quoted_view = conn.engine.dialect.identifier_preparer.quote_identifier(
            view_name
        )
        if conn.in_transaction():
            conn.get_transaction().rollback()
        with conn.begin():
            conn.exec_driver_sql(f"DROP VIEW IF EXISTS {quoted_view}")
 
    def _get_all_views(self, conn):
        from sqlalchemy import inspect
 
        return inspect(conn).get_view_names()
 
 
class PandasSQLTest:
    """
    Base class with common private methods for SQLAlchemy and fallback cases.
 
    """
 
    def load_iris_data(self, iris_path):
        self.drop_table("iris", self.conn)
        if isinstance(self.conn, sqlite3.Connection):
            create_and_load_iris_sqlite3(self.conn, iris_path)
        else:
            create_and_load_iris(self.conn, iris_path, self.flavor)
 
    def load_types_data(self, types_data):
        if self.flavor != "postgresql":
            for entry in types_data:
                entry.pop("DateColWithTz")
        if isinstance(self.conn, sqlite3.Connection):
            types_data = [tuple(entry.values()) for entry in types_data]
            create_and_load_types_sqlite3(self.conn, types_data)
        else:
            create_and_load_types(self.conn, types_data, self.flavor)
 
    def _read_sql_iris_parameter(self):
        query = SQL_STRINGS["read_parameters"][self.flavor]
        params = ("Iris-setosa", 5.1)
        iris_frame = self.pandasSQL.read_query(query, params=params)
        check_iris_frame(iris_frame)
 
    def _read_sql_iris_named_parameter(self):
        query = SQL_STRINGS["read_named_parameters"][self.flavor]
        params = {"name": "Iris-setosa", "length": 5.1}
        iris_frame = self.pandasSQL.read_query(query, params=params)
        check_iris_frame(iris_frame)
 
    def _read_sql_iris_no_parameter_with_percent(self):
        query = SQL_STRINGS["read_no_parameters_with_percent"][self.flavor]
        iris_frame = self.pandasSQL.read_query(query, params=None)
        check_iris_frame(iris_frame)
 
    def _to_sql_empty(self, test_frame1):
        self.drop_table("test_frame1", self.conn)
        assert self.pandasSQL.to_sql(test_frame1.iloc[:0], "test_frame1") == 0
 
    def _to_sql_with_sql_engine(self, test_frame1, engine="auto", **engine_kwargs):
        """`to_sql` with the `engine` param"""
        # mostly copied from this class's `_to_sql()` method
        self.drop_table("test_frame1", self.conn)
 
        assert (
            self.pandasSQL.to_sql(
                test_frame1, "test_frame1", engine=engine, **engine_kwargs
            )
            == 4
        )
        assert self.pandasSQL.has_table("test_frame1")
 
        num_entries = len(test_frame1)
        num_rows = count_rows(self.conn, "test_frame1")
        assert num_rows == num_entries
 
        # Nuke table
        self.drop_table("test_frame1", self.conn)
 
    def _roundtrip(self, test_frame1):
        self.drop_table("test_frame_roundtrip", self.conn)
        assert self.pandasSQL.to_sql(test_frame1, "test_frame_roundtrip") == 4
        result = self.pandasSQL.read_query("SELECT * FROM test_frame_roundtrip")
 
        result.set_index("level_0", inplace=True)
        # result.index.astype(int)
 
        result.index.name = None
 
        tm.assert_frame_equal(result, test_frame1)
 
    def _execute_sql(self):
        # drop_sql = "DROP TABLE IF EXISTS test"  # should already be done
        iris_results = self.pandasSQL.execute("SELECT * FROM iris")
        row = iris_results.fetchone()
        tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"])
 
    def _to_sql_save_index(self):
        df = DataFrame.from_records(
            [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A"]
        )
        assert self.pandasSQL.to_sql(df, "test_to_sql_saves_index") == 2
        ix_cols = self._get_index_columns("test_to_sql_saves_index")
        assert ix_cols == [["A"]]
 
    def _transaction_test(self):
        with self.pandasSQL.run_transaction() as trans:
            stmt = "CREATE TABLE test_trans (A INT, B TEXT)"
            if isinstance(self.pandasSQL, SQLiteDatabase):
                trans.execute(stmt)
            else:
                from sqlalchemy import text
 
                stmt = text(stmt)
                trans.execute(stmt)
 
        class DummyException(Exception):
            pass
 
        # Make sure when transaction is rolled back, no rows get inserted
        ins_sql = "INSERT INTO test_trans (A,B) VALUES (1, 'blah')"
        if isinstance(self.pandasSQL, SQLDatabase):
            from sqlalchemy import text
 
            ins_sql = text(ins_sql)
        try:
            with self.pandasSQL.run_transaction() as trans:
                trans.execute(ins_sql)
                raise DummyException("error")
        except DummyException:
            # ignore raised exception
            pass
        res = self.pandasSQL.read_query("SELECT * FROM test_trans")
        assert len(res) == 0
 
        # Make sure when transaction is committed, rows do get inserted
        with self.pandasSQL.run_transaction() as trans:
            trans.execute(ins_sql)
        res2 = self.pandasSQL.read_query("SELECT * FROM test_trans")
        assert len(res2) == 1
 
 
# -----------------------------------------------------------------------------
# -- Testing the public API
 
 
class _TestSQLApi(PandasSQLTest):
    """
    Base class to test the public API.
 
    From this two classes are derived to run these tests for both the
    sqlalchemy mode (`TestSQLApi`) and the fallback mode
    (`TestSQLiteFallbackApi`).  These tests are run with sqlite3. Specific
    tests for the different sql flavours are included in `_TestSQLAlchemy`.
 
    Notes:
    flavor can always be passed even in SQLAlchemy mode,
    should be correctly ignored.
 
    we don't use drop_table because that isn't part of the public api
 
    """
 
    flavor = "sqlite"
    mode: str
 
    @pytest.fixture(autouse=True)
    def setup_method(self, iris_path, types_data):
        self.conn = self.connect()
        self.load_iris_data(iris_path)
        self.load_types_data(types_data)
        self.load_test_data_and_sql()
 
    def load_test_data_and_sql(self):
        create_and_load_iris_view(self.conn)
 
    def test_read_sql_view(self):
        iris_frame = sql.read_sql_query("SELECT * FROM iris_view", self.conn)
        check_iris_frame(iris_frame)
 
    def test_read_sql_with_chunksize_no_result(self):
        query = "SELECT * FROM iris_view WHERE SepalLength < 0.0"
        with_batch = sql.read_sql_query(query, self.conn, chunksize=5)
        without_batch = sql.read_sql_query(query, self.conn)
        tm.assert_frame_equal(concat(with_batch), without_batch)
 
    def test_to_sql(self, test_frame1):
        sql.to_sql(test_frame1, "test_frame1", self.conn)
        assert sql.has_table("test_frame1", self.conn)
 
    def test_to_sql_fail(self, test_frame1):
        sql.to_sql(test_frame1, "test_frame2", self.conn, if_exists="fail")
        assert sql.has_table("test_frame2", self.conn)
 
        msg = "Table 'test_frame2' already exists"
        with pytest.raises(ValueError, match=msg):
            sql.to_sql(test_frame1, "test_frame2", self.conn, if_exists="fail")
 
    def test_to_sql_replace(self, test_frame1):
        sql.to_sql(test_frame1, "test_frame3", self.conn, if_exists="fail")
        # Add to table again
        sql.to_sql(test_frame1, "test_frame3", self.conn, if_exists="replace")
        assert sql.has_table("test_frame3", self.conn)
 
        num_entries = len(test_frame1)
        num_rows = count_rows(self.conn, "test_frame3")
 
        assert num_rows == num_entries
 
    def test_to_sql_append(self, test_frame1):
        assert sql.to_sql(test_frame1, "test_frame4", self.conn, if_exists="fail") == 4
 
        # Add to table again
        assert (
            sql.to_sql(test_frame1, "test_frame4", self.conn, if_exists="append") == 4
        )
        assert sql.has_table("test_frame4", self.conn)
 
        num_entries = 2 * len(test_frame1)
        num_rows = count_rows(self.conn, "test_frame4")
 
        assert num_rows == num_entries
 
    def test_to_sql_type_mapping(self, test_frame3):
        sql.to_sql(test_frame3, "test_frame5", self.conn, index=False)
        result = sql.read_sql("SELECT * FROM test_frame5", self.conn)
 
        tm.assert_frame_equal(test_frame3, result)
 
    def test_to_sql_series(self):
        s = Series(np.arange(5, dtype="int64"), name="series")
        sql.to_sql(s, "test_series", self.conn, index=False)
        s2 = sql.read_sql_query("SELECT * FROM test_series", self.conn)
        tm.assert_frame_equal(s.to_frame(), s2)
 
    def test_roundtrip(self, test_frame1):
        sql.to_sql(test_frame1, "test_frame_roundtrip", con=self.conn)
        result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn)
 
        # HACK!
        result.index = test_frame1.index
        result.set_index("level_0", inplace=True)
        result.index.astype(int)
        result.index.name = None
        tm.assert_frame_equal(result, test_frame1)
 
    def test_roundtrip_chunksize(self, test_frame1):
        sql.to_sql(
            test_frame1,
            "test_frame_roundtrip",
            con=self.conn,
            index=False,
            chunksize=2,
        )
        result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn)
        tm.assert_frame_equal(result, test_frame1)
 
    def test_execute_sql(self):
        # drop_sql = "DROP TABLE IF EXISTS test"  # should already be done
        with sql.pandasSQL_builder(self.conn) as pandas_sql:
            iris_results = pandas_sql.execute("SELECT * FROM iris")
        row = iris_results.fetchone()
        tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"])
 
    def test_date_parsing(self):
        # Test date parsing in read_sql
        # No Parsing
        df = sql.read_sql_query("SELECT * FROM types", self.conn)
        assert not issubclass(df.DateCol.dtype.type, np.datetime64)
 
        df = sql.read_sql_query(
            "SELECT * FROM types", self.conn, parse_dates=["DateCol"]
        )
        assert issubclass(df.DateCol.dtype.type, np.datetime64)
        assert df.DateCol.tolist() == [
            Timestamp(2000, 1, 3, 0, 0, 0),
            Timestamp(2000, 1, 4, 0, 0, 0),
        ]
 
        df = sql.read_sql_query(
            "SELECT * FROM types",
            self.conn,
            parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"},
        )
        assert issubclass(df.DateCol.dtype.type, np.datetime64)
        assert df.DateCol.tolist() == [
            Timestamp(2000, 1, 3, 0, 0, 0),
            Timestamp(2000, 1, 4, 0, 0, 0),
        ]
 
        df = sql.read_sql_query(
            "SELECT * FROM types", self.conn, parse_dates=["IntDateCol"]
        )
        assert issubclass(df.IntDateCol.dtype.type, np.datetime64)
        assert df.IntDateCol.tolist() == [
            Timestamp(1986, 12, 25, 0, 0, 0),
            Timestamp(2013, 1, 1, 0, 0, 0),
        ]
 
        df = sql.read_sql_query(
            "SELECT * FROM types", self.conn, parse_dates={"IntDateCol": "s"}
        )
        assert issubclass(df.IntDateCol.dtype.type, np.datetime64)
        assert df.IntDateCol.tolist() == [
            Timestamp(1986, 12, 25, 0, 0, 0),
            Timestamp(2013, 1, 1, 0, 0, 0),
        ]
 
        df = sql.read_sql_query(
            "SELECT * FROM types",
            self.conn,
            parse_dates={"IntDateOnlyCol": "%Y%m%d"},
        )
        assert issubclass(df.IntDateOnlyCol.dtype.type, np.datetime64)
        assert df.IntDateOnlyCol.tolist() == [
            Timestamp("2010-10-10"),
            Timestamp("2010-12-12"),
        ]
 
    @pytest.mark.parametrize("error", ["ignore", "raise", "coerce"])
    @pytest.mark.parametrize(
        "read_sql, text, mode",
        [
            (sql.read_sql, "SELECT * FROM types", ("sqlalchemy", "fallback")),
            (sql.read_sql, "types", ("sqlalchemy")),
            (
                sql.read_sql_query,
                "SELECT * FROM types",
                ("sqlalchemy", "fallback"),
            ),
            (sql.read_sql_table, "types", ("sqlalchemy")),
        ],
    )
    def test_custom_dateparsing_error(
        self, read_sql, text, mode, error, types_data_frame
    ):
        if self.mode in mode:
            expected = types_data_frame.astype({"DateCol": "datetime64[ns]"})
 
            result = read_sql(
                text,
                con=self.conn,
                parse_dates={
                    "DateCol": {"errors": error},
                },
            )
 
            tm.assert_frame_equal(result, expected)
 
    def test_date_and_index(self):
        # Test case where same column appears in parse_date and index_col
 
        df = sql.read_sql_query(
            "SELECT * FROM types",
            self.conn,
            index_col="DateCol",
            parse_dates=["DateCol", "IntDateCol"],
        )
 
        assert issubclass(df.index.dtype.type, np.datetime64)
        assert issubclass(df.IntDateCol.dtype.type, np.datetime64)
 
    def test_timedelta(self):
        # see #6921
        df = to_timedelta(Series(["00:00:01", "00:00:03"], name="foo")).to_frame()
        with tm.assert_produces_warning(UserWarning):
            result_count = df.to_sql("test_timedelta", self.conn)
        assert result_count == 2
        result = sql.read_sql_query("SELECT * FROM test_timedelta", self.conn)
        tm.assert_series_equal(result["foo"], df["foo"].view("int64"))
 
    def test_complex_raises(self):
        df = DataFrame({"a": [1 + 1j, 2j]})
        msg = "Complex datatypes not supported"
        with pytest.raises(ValueError, match=msg):
            assert df.to_sql("test_complex", self.conn) is None
 
    @pytest.mark.parametrize(
        "index_name,index_label,expected",
        [
            # no index name, defaults to 'index'
            (None, None, "index"),
            # specifying index_label
            (None, "other_label", "other_label"),
            # using the index name
            ("index_name", None, "index_name"),
            # has index name, but specifying index_label
            ("index_name", "other_label", "other_label"),
            # index name is integer
            (0, None, "0"),
            # index name is None but index label is integer
            (None, 0, "0"),
        ],
    )
    def test_to_sql_index_label(self, index_name, index_label, expected):
        temp_frame = DataFrame({"col1": range(4)})
        temp_frame.index.name = index_name
        query = "SELECT * FROM test_index_label"
        sql.to_sql(temp_frame, "test_index_label", self.conn, index_label=index_label)
        frame = sql.read_sql_query(query, self.conn)
        assert frame.columns[0] == expected
 
    def test_to_sql_index_label_multiindex(self):
        expected_row_count = 4
        temp_frame = DataFrame(
            {"col1": range(4)},
            index=MultiIndex.from_product([("A0", "A1"), ("B0", "B1")]),
        )
 
        # no index name, defaults to 'level_0' and 'level_1'
        result = sql.to_sql(temp_frame, "test_index_label", self.conn)
        assert result == expected_row_count
        frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn)
        assert frame.columns[0] == "level_0"
        assert frame.columns[1] == "level_1"
 
        # specifying index_label
        result = sql.to_sql(
            temp_frame,
            "test_index_label",
            self.conn,
            if_exists="replace",
            index_label=["A", "B"],
        )
        assert result == expected_row_count
        frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn)
        assert frame.columns[:2].tolist() == ["A", "B"]
 
        # using the index name
        temp_frame.index.names = ["A", "B"]
        result = sql.to_sql(
            temp_frame, "test_index_label", self.conn, if_exists="replace"
        )
        assert result == expected_row_count
        frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn)
        assert frame.columns[:2].tolist() == ["A", "B"]
 
        # has index name, but specifying index_label
        result = sql.to_sql(
            temp_frame,
            "test_index_label",
            self.conn,
            if_exists="replace",
            index_label=["C", "D"],
        )
        assert result == expected_row_count
        frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn)
        assert frame.columns[:2].tolist() == ["C", "D"]
 
        msg = "Length of 'index_label' should match number of levels, which is 2"
        with pytest.raises(ValueError, match=msg):
            sql.to_sql(
                temp_frame,
                "test_index_label",
                self.conn,
                if_exists="replace",
                index_label="C",
            )
 
    def test_multiindex_roundtrip(self):
        df = DataFrame.from_records(
            [(1, 2.1, "line1"), (2, 1.5, "line2")],
            columns=["A", "B", "C"],
            index=["A", "B"],
        )
 
        df.to_sql("test_multiindex_roundtrip", self.conn)
        result = sql.read_sql_query(
            "SELECT * FROM test_multiindex_roundtrip", self.conn, index_col=["A", "B"]
        )
        tm.assert_frame_equal(df, result, check_index_type=True)
 
    @pytest.mark.parametrize(
        "dtype",
        [
            None,
            int,
            float,
            {"A": int, "B": float},
        ],
    )
    def test_dtype_argument(self, dtype):
        # GH10285 Add dtype argument to read_sql_query
        df = DataFrame([[1.2, 3.4], [5.6, 7.8]], columns=["A", "B"])
        assert df.to_sql("test_dtype_argument", self.conn) == 2
 
        expected = df.astype(dtype)
        result = sql.read_sql_query(
            "SELECT A, B FROM test_dtype_argument", con=self.conn, dtype=dtype
        )
 
        tm.assert_frame_equal(result, expected)
 
    def test_integer_col_names(self):
        df = DataFrame([[1, 2], [3, 4]], columns=[0, 1])
        sql.to_sql(df, "test_frame_integer_col_names", self.conn, if_exists="replace")
 
    def test_get_schema(self, test_frame1):
        create_sql = sql.get_schema(test_frame1, "test", con=self.conn)
        assert "CREATE" in create_sql
 
    def test_get_schema_with_schema(self, test_frame1):
        # GH28486
        create_sql = sql.get_schema(test_frame1, "test", con=self.conn, schema="pypi")
        assert "CREATE TABLE pypi." in create_sql
 
    def test_get_schema_dtypes(self):
        if self.mode == "sqlalchemy":
            from sqlalchemy import Integer
 
            dtype = Integer
        else:
            dtype = "INTEGER"
 
        float_frame = DataFrame({"a": [1.1, 1.2], "b": [2.1, 2.2]})
        create_sql = sql.get_schema(
            float_frame, "test", con=self.conn, dtype={"b": dtype}
        )
        assert "CREATE" in create_sql
        assert "INTEGER" in create_sql
 
    def test_get_schema_keys(self, test_frame1):
        frame = DataFrame({"Col1": [1.1, 1.2], "Col2": [2.1, 2.2]})
        create_sql = sql.get_schema(frame, "test", con=self.conn, keys="Col1")
        constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("Col1")'
        assert constraint_sentence in create_sql
 
        # multiple columns as key (GH10385)
        create_sql = sql.get_schema(test_frame1, "test", con=self.conn, keys=["A", "B"])
        constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("A", "B")'
        assert constraint_sentence in create_sql
 
    def test_chunksize_read(self):
        df = DataFrame(np.random.randn(22, 5), columns=list("abcde"))
        df.to_sql("test_chunksize", self.conn, index=False)
 
        # reading the query in one time
        res1 = sql.read_sql_query("select * from test_chunksize", self.conn)
 
        # reading the query in chunks with read_sql_query
        res2 = DataFrame()
        i = 0
        sizes = [5, 5, 5, 5, 2]
 
        for chunk in sql.read_sql_query(
            "select * from test_chunksize", self.conn, chunksize=5
        ):
            res2 = concat([res2, chunk], ignore_index=True)
            assert len(chunk) == sizes[i]
            i += 1
 
        tm.assert_frame_equal(res1, res2)
 
        # reading the query in chunks with read_sql_query
        if self.mode == "sqlalchemy":
            res3 = DataFrame()
            i = 0
            sizes = [5, 5, 5, 5, 2]
 
            for chunk in sql.read_sql_table("test_chunksize", self.conn, chunksize=5):
                res3 = concat([res3, chunk], ignore_index=True)
                assert len(chunk) == sizes[i]
                i += 1
 
            tm.assert_frame_equal(res1, res3)
 
    def test_categorical(self):
        # GH8624
        # test that categorical gets written correctly as dense column
        df = DataFrame(
            {
                "person_id": [1, 2, 3],
                "person_name": ["John P. Doe", "Jane Dove", "John P. Doe"],
            }
        )
        df2 = df.copy()
        df2["person_name"] = df2["person_name"].astype("category")
 
        df2.to_sql("test_categorical", self.conn, index=False)
        res = sql.read_sql_query("SELECT * FROM test_categorical", self.conn)
 
        tm.assert_frame_equal(res, df)
 
    def test_unicode_column_name(self):
        # GH 11431
        df = DataFrame([[1, 2], [3, 4]], columns=["\xe9", "b"])
        df.to_sql("test_unicode", self.conn, index=False)
 
    def test_escaped_table_name(self):
        # GH 13206
        df = DataFrame({"A": [0, 1, 2], "B": [0.2, np.nan, 5.6]})
        df.to_sql("d1187b08-4943-4c8d-a7f6", self.conn, index=False)
 
        res = sql.read_sql_query("SELECT * FROM `d1187b08-4943-4c8d-a7f6`", self.conn)
 
        tm.assert_frame_equal(res, df)
 
 
@pytest.mark.skipif(not SQLALCHEMY_INSTALLED, reason="SQLAlchemy not installed")
class TestSQLApi(SQLAlchemyMixIn, _TestSQLApi):
    """
    Test the public API as it would be used directly
 
    Tests for `read_sql_table` are included here, as this is specific for the
    sqlalchemy mode.
 
    """
 
    flavor = "sqlite"
    mode = "sqlalchemy"
 
    @classmethod
    def setup_class(cls):
        cls.engine = sqlalchemy.create_engine("sqlite:///:memory:")
 
    def test_read_table_columns(self, test_frame1):
        # test columns argument in read_table
        sql.to_sql(test_frame1, "test_frame", self.conn)
 
        cols = ["A", "B"]
        result = sql.read_sql_table("test_frame", self.conn, columns=cols)
        assert result.columns.tolist() == cols
 
    def test_read_table_index_col(self, test_frame1):
        # test columns argument in read_table
        sql.to_sql(test_frame1, "test_frame", self.conn)
 
        result = sql.read_sql_table("test_frame", self.conn, index_col="index")
        assert result.index.names == ["index"]
 
        result = sql.read_sql_table("test_frame", self.conn, index_col=["A", "B"])
        assert result.index.names == ["A", "B"]
 
        result = sql.read_sql_table(
            "test_frame", self.conn, index_col=["A", "B"], columns=["C", "D"]
        )
        assert result.index.names == ["A", "B"]
        assert result.columns.tolist() == ["C", "D"]
 
    def test_read_sql_delegate(self):
        iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn)
        iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn)
        tm.assert_frame_equal(iris_frame1, iris_frame2)
 
        iris_frame1 = sql.read_sql_table("iris", self.conn)
        iris_frame2 = sql.read_sql("iris", self.conn)
        tm.assert_frame_equal(iris_frame1, iris_frame2)
 
    def test_not_reflect_all_tables(self):
        from sqlalchemy import text
        from sqlalchemy.engine import Engine
 
        # create invalid table
        query_list = [
            text("CREATE TABLE invalid (x INTEGER, y UNKNOWN);"),
            text("CREATE TABLE other_table (x INTEGER, y INTEGER);"),
        ]
        for query in query_list:
            if isinstance(self.conn, Engine):
                with self.conn.connect() as conn:
                    with conn.begin():
                        conn.execute(query)
            else:
                with self.conn.begin():
                    self.conn.execute(query)
 
        with tm.assert_produces_warning(None):
            sql.read_sql_table("other_table", self.conn)
            sql.read_sql_query("SELECT * FROM other_table", self.conn)
 
    def test_warning_case_insensitive_table_name(self, test_frame1):
        # see gh-7815
        with tm.assert_produces_warning(
            UserWarning,
            match=(
                r"The provided table name 'TABLE1' is not found exactly as such in "
                r"the database after writing the table, possibly due to case "
                r"sensitivity issues. Consider using lower case table names."
            ),
        ):
            sql.SQLDatabase(self.conn).check_case_sensitive("TABLE1", "")
 
        # Test that the warning is certainly NOT triggered in a normal case.
        with tm.assert_produces_warning(None):
            test_frame1.to_sql("CaseSensitive", self.conn)
 
    def _get_index_columns(self, tbl_name):
        from sqlalchemy.engine import reflection
 
        insp = reflection.Inspector.from_engine(self.conn)
        ixs = insp.get_indexes("test_index_saved")
        ixs = [i["column_names"] for i in ixs]
        return ixs
 
    def test_sqlalchemy_type_mapping(self):
        from sqlalchemy import TIMESTAMP
 
        # Test Timestamp objects (no datetime64 because of timezone) (GH9085)
        df = DataFrame(
            {"time": to_datetime(["2014-12-12 01:54", "2014-12-11 02:54"], utc=True)}
        )
        db = sql.SQLDatabase(self.conn)
        table = sql.SQLTable("test_type", db, frame=df)
        # GH 9086: TIMESTAMP is the suggested type for datetimes with timezones
        assert isinstance(table.table.c["time"].type, TIMESTAMP)
 
    @pytest.mark.parametrize(
        "integer, expected",
        [
            ("int8", "SMALLINT"),
            ("Int8", "SMALLINT"),
            ("uint8", "SMALLINT"),
            ("UInt8", "SMALLINT"),
            ("int16", "SMALLINT"),
            ("Int16", "SMALLINT"),
            ("uint16", "INTEGER"),
            ("UInt16", "INTEGER"),
            ("int32", "INTEGER"),
            ("Int32", "INTEGER"),
            ("uint32", "BIGINT"),
            ("UInt32", "BIGINT"),
            ("int64", "BIGINT"),
            ("Int64", "BIGINT"),
            (int, "BIGINT" if np.dtype(int).name == "int64" else "INTEGER"),
        ],
    )
    def test_sqlalchemy_integer_mapping(self, integer, expected):
        # GH35076 Map pandas integer to optimal SQLAlchemy integer type
        df = DataFrame([0, 1], columns=["a"], dtype=integer)
        db = sql.SQLDatabase(self.conn)
        table = sql.SQLTable("test_type", db, frame=df)
 
        result = str(table.table.c.a.type)
        assert result == expected
 
    @pytest.mark.parametrize("integer", ["uint64", "UInt64"])
    def test_sqlalchemy_integer_overload_mapping(self, integer):
        # GH35076 Map pandas integer to optimal SQLAlchemy integer type
        df = DataFrame([0, 1], columns=["a"], dtype=integer)
        db = sql.SQLDatabase(self.conn)
        with pytest.raises(
            ValueError, match="Unsigned 64 bit integer datatype is not supported"
        ):
            sql.SQLTable("test_type", db, frame=df)
 
    def test_database_uri_string(self, test_frame1):
        # Test read_sql and .to_sql method with a database URI (GH10654)
        # db_uri = 'sqlite:///:memory:' # raises
        # sqlalchemy.exc.OperationalError: (sqlite3.OperationalError) near
        # "iris": syntax error [SQL: 'iris']
        with tm.ensure_clean() as name:
            db_uri = "sqlite:///" + name
            table = "iris"
            test_frame1.to_sql(table, db_uri, if_exists="replace", index=False)
            test_frame2 = sql.read_sql(table, db_uri)
            test_frame3 = sql.read_sql_table(table, db_uri)
            query = "SELECT * FROM iris"
            test_frame4 = sql.read_sql_query(query, db_uri)
        tm.assert_frame_equal(test_frame1, test_frame2)
        tm.assert_frame_equal(test_frame1, test_frame3)
        tm.assert_frame_equal(test_frame1, test_frame4)
 
    @td.skip_if_installed("pg8000")
    def test_pg8000_sqlalchemy_passthrough_error(self):
        # using driver that will not be installed on CI to trigger error
        # in sqlalchemy.create_engine -> test passing of this error to user
        db_uri = "postgresql+pg8000://user:pass@host/dbname"
        with pytest.raises(ImportError, match="pg8000"):
            sql.read_sql("select * from table", db_uri)
 
    def test_query_by_text_obj(self):
        # WIP : GH10846
        from sqlalchemy import text
 
        name_text = text("select * from iris where name=:name")
        iris_df = sql.read_sql(name_text, self.conn, params={"name": "Iris-versicolor"})
        all_names = set(iris_df["Name"])
        assert all_names == {"Iris-versicolor"}
 
    def test_query_by_select_obj(self):
        # WIP : GH10846
        from sqlalchemy import (
            bindparam,
            select,
        )
 
        iris = iris_table_metadata(self.flavor)
        name_select = select(iris).where(iris.c.Name == bindparam("name"))
        iris_df = sql.read_sql(name_select, self.conn, params={"name": "Iris-setosa"})
        all_names = set(iris_df["Name"])
        assert all_names == {"Iris-setosa"}
 
    def test_column_with_percentage(self):
        # GH 37157
        df = DataFrame({"A": [0, 1, 2], "%_variation": [3, 4, 5]})
        df.to_sql("test_column_percentage", self.conn, index=False)
 
        res = sql.read_sql_table("test_column_percentage", self.conn)
 
        tm.assert_frame_equal(res, df)
 
 
class TestSQLiteFallbackApi(SQLiteMixIn, _TestSQLApi):
    """
    Test the public sqlite connection fallback API
 
    """
 
    flavor = "sqlite"
    mode = "fallback"
 
    def connect(self, database=":memory:"):
        return sqlite3.connect(database)
 
    def test_sql_open_close(self, test_frame3):
        # Test if the IO in the database still work if the connection closed
        # between the writing and reading (as in many real situations).
 
        with tm.ensure_clean() as name:
            with closing(self.connect(name)) as conn:
                assert (
                    sql.to_sql(test_frame3, "test_frame3_legacy", conn, index=False)
                    == 4
                )
 
            with closing(self.connect(name)) as conn:
                result = sql.read_sql_query("SELECT * FROM test_frame3_legacy;", conn)
 
        tm.assert_frame_equal(test_frame3, result)
 
    @pytest.mark.skipif(SQLALCHEMY_INSTALLED, reason="SQLAlchemy is installed")
    def test_con_string_import_error(self):
        conn = "mysql://root@localhost/pandas"
        msg = "Using URI string without sqlalchemy installed"
        with pytest.raises(ImportError, match=msg):
            sql.read_sql("SELECT * FROM iris", conn)
 
    @pytest.mark.skipif(SQLALCHEMY_INSTALLED, reason="SQLAlchemy is installed")
    def test_con_unknown_dbapi2_class_does_not_error_without_sql_alchemy_installed(
        self,
    ):
        class MockSqliteConnection:
            def __init__(self, *args, **kwargs) -> None:
                self.conn = sqlite3.Connection(*args, **kwargs)
 
            def __getattr__(self, name):
                return getattr(self.conn, name)
 
            def close(self):
                self.conn.close()
 
        with contextlib.closing(MockSqliteConnection(":memory:")) as conn:
            with tm.assert_produces_warning(UserWarning):
                sql.read_sql("SELECT 1", conn)
 
    def test_read_sql_delegate(self):
        iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn)
        iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn)
        tm.assert_frame_equal(iris_frame1, iris_frame2)
 
        msg = "Execution failed on sql 'iris': near \"iris\": syntax error"
        with pytest.raises(sql.DatabaseError, match=msg):
            sql.read_sql("iris", self.conn)
 
    def test_get_schema2(self, test_frame1):
        # without providing a connection object (available for backwards comp)
        create_sql = sql.get_schema(test_frame1, "test")
        assert "CREATE" in create_sql
 
    def _get_sqlite_column_type(self, schema, column):
        for col in schema.split("\n"):
            if col.split()[0].strip('"') == column:
                return col.split()[1]
        raise ValueError(f"Column {column} not found")
 
    def test_sqlite_type_mapping(self):
        # Test Timestamp objects (no datetime64 because of timezone) (GH9085)
        df = DataFrame(
            {"time": to_datetime(["2014-12-12 01:54", "2014-12-11 02:54"], utc=True)}
        )
        db = sql.SQLiteDatabase(self.conn)
        table = sql.SQLiteTable("test_type", db, frame=df)
        schema = table.sql_schema()
        assert self._get_sqlite_column_type(schema, "time") == "TIMESTAMP"
 
 
# -----------------------------------------------------------------------------
# -- Database flavor specific tests
 
 
@pytest.mark.skipif(not SQLALCHEMY_INSTALLED, reason="SQLAlchemy not installed")
class _TestSQLAlchemy(SQLAlchemyMixIn, PandasSQLTest):
    """
    Base class for testing the sqlalchemy backend.
 
    Subclasses for specific database types are created below. Tests that
    deviate for each flavor are overwritten there.
 
    """
 
    flavor: str
 
    @classmethod
    def setup_class(cls):
        cls.setup_driver()
        cls.setup_engine()
 
    @pytest.fixture(autouse=True)
    def setup_method(self, iris_path, types_data):
        try:
            self.conn = self.engine.connect()
            self.pandasSQL = sql.SQLDatabase(self.conn)
        except sqlalchemy.exc.OperationalError:
            pytest.skip(f"Can't connect to {self.flavor} server")
        self.load_iris_data(iris_path)
        self.load_types_data(types_data)
 
    @classmethod
    def setup_driver(cls):
        raise NotImplementedError()
 
    @classmethod
    def setup_engine(cls):
        raise NotImplementedError()
 
    def test_read_sql_parameter(self):
        self._read_sql_iris_parameter()
 
    def test_read_sql_named_parameter(self):
        self._read_sql_iris_named_parameter()
 
    def test_to_sql_empty(self, test_frame1):
        self._to_sql_empty(test_frame1)
 
    def test_create_table(self):
        from sqlalchemy import inspect
 
        temp_conn = self.connect()
        temp_frame = DataFrame(
            {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]}
        )
        with sql.SQLDatabase(temp_conn, need_transaction=True) as pandasSQL:
            assert pandasSQL.to_sql(temp_frame, "temp_frame") == 4
 
        insp = inspect(temp_conn)
        assert insp.has_table("temp_frame")
 
    def test_drop_table(self):
        from sqlalchemy import inspect
 
        temp_conn = self.connect()
        temp_frame = DataFrame(
            {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]}
        )
        pandasSQL = sql.SQLDatabase(temp_conn)
        assert pandasSQL.to_sql(temp_frame, "temp_frame") == 4
 
        insp = inspect(temp_conn)
        assert insp.has_table("temp_frame")
 
        pandasSQL.drop_table("temp_frame")
        try:
            insp.clear_cache()  # needed with SQLAlchemy 2.0, unavailable prior
        except AttributeError:
            pass
        assert not insp.has_table("temp_frame")
 
    def test_roundtrip(self, test_frame1):
        self._roundtrip(test_frame1)
 
    def test_execute_sql(self):
        self._execute_sql()
 
    def test_read_table(self):
        iris_frame = sql.read_sql_table("iris", con=self.conn)
        check_iris_frame(iris_frame)
 
    def test_read_table_columns(self):
        iris_frame = sql.read_sql_table(
            "iris", con=self.conn, columns=["SepalLength", "SepalLength"]
        )
        tm.equalContents(iris_frame.columns.values, ["SepalLength", "SepalLength"])
 
    def test_read_table_absent_raises(self):
        msg = "Table this_doesnt_exist not found"
        with pytest.raises(ValueError, match=msg):
            sql.read_sql_table("this_doesnt_exist", con=self.conn)
 
    def test_default_type_conversion(self):
        df = sql.read_sql_table("types", self.conn)
 
        assert issubclass(df.FloatCol.dtype.type, np.floating)
        assert issubclass(df.IntCol.dtype.type, np.integer)
        assert issubclass(df.BoolCol.dtype.type, np.bool_)
 
        # Int column with NA values stays as float
        assert issubclass(df.IntColWithNull.dtype.type, np.floating)
        # Bool column with NA values becomes object
        assert issubclass(df.BoolColWithNull.dtype.type, object)
 
    def test_bigint(self):
        # int64 should be converted to BigInteger, GH7433
        df = DataFrame(data={"i64": [2**62]})
        assert df.to_sql("test_bigint", self.conn, index=False) == 1
        result = sql.read_sql_table("test_bigint", self.conn)
 
        tm.assert_frame_equal(df, result)
 
    def test_default_date_load(self):
        df = sql.read_sql_table("types", self.conn)
 
        # IMPORTANT - sqlite has no native date type, so shouldn't parse, but
        # MySQL SHOULD be converted.
        assert issubclass(df.DateCol.dtype.type, np.datetime64)
 
    def test_datetime_with_timezone(self, request):
        # edge case that converts postgresql datetime with time zone types
        # to datetime64[ns,psycopg2.tz.FixedOffsetTimezone..], which is ok
        # but should be more natural, so coerce to datetime64[ns] for now
 
        def check(col):
            # check that a column is either datetime64[ns]
            # or datetime64[ns, UTC]
            if is_datetime64_dtype(col.dtype):
                # "2000-01-01 00:00:00-08:00" should convert to
                # "2000-01-01 08:00:00"
                assert col[0] == Timestamp("2000-01-01 08:00:00")
 
                # "2000-06-01 00:00:00-07:00" should convert to
                # "2000-06-01 07:00:00"
                assert col[1] == Timestamp("2000-06-01 07:00:00")
 
            elif is_datetime64tz_dtype(col.dtype):
                assert str(col.dt.tz) == "UTC"
 
                # "2000-01-01 00:00:00-08:00" should convert to
                # "2000-01-01 08:00:00"
                # "2000-06-01 00:00:00-07:00" should convert to
                # "2000-06-01 07:00:00"
                # GH 6415
                expected_data = [
                    Timestamp("2000-01-01 08:00:00", tz="UTC"),
                    Timestamp("2000-06-01 07:00:00", tz="UTC"),
                ]
                expected = Series(expected_data, name=col.name)
                tm.assert_series_equal(col, expected)
 
            else:
                raise AssertionError(
                    f"DateCol loaded with incorrect type -> {col.dtype}"
                )
 
        # GH11216
        df = read_sql_query("select * from types", self.conn)
        if not hasattr(df, "DateColWithTz"):
            request.node.add_marker(
                pytest.mark.xfail(reason="no column with datetime with time zone")
            )
 
        # this is parsed on Travis (linux), but not on macosx for some reason
        # even with the same versions of psycopg2 & sqlalchemy, possibly a
        # Postgresql server version difference
        col = df.DateColWithTz
        assert is_datetime64tz_dtype(col.dtype)
 
        df = read_sql_query(
            "select * from types", self.conn, parse_dates=["DateColWithTz"]
        )
        if not hasattr(df, "DateColWithTz"):
            request.node.add_marker(
                pytest.mark.xfail(reason="no column with datetime with time zone")
            )
        col = df.DateColWithTz
        assert is_datetime64tz_dtype(col.dtype)
        assert str(col.dt.tz) == "UTC"
        check(df.DateColWithTz)
 
        df = concat(
            list(read_sql_query("select * from types", self.conn, chunksize=1)),
            ignore_index=True,
        )
        col = df.DateColWithTz
        assert is_datetime64tz_dtype(col.dtype)
        assert str(col.dt.tz) == "UTC"
        expected = sql.read_sql_table("types", self.conn)
        col = expected.DateColWithTz
        assert is_datetime64tz_dtype(col.dtype)
        tm.assert_series_equal(df.DateColWithTz, expected.DateColWithTz)
 
        # xref #7139
        # this might or might not be converted depending on the postgres driver
        df = sql.read_sql_table("types", self.conn)
        check(df.DateColWithTz)
 
    def test_datetime_with_timezone_roundtrip(self):
        # GH 9086
        # Write datetimetz data to a db and read it back
        # For dbs that support timestamps with timezones, should get back UTC
        # otherwise naive data should be returned
        expected = DataFrame(
            {"A": date_range("2013-01-01 09:00:00", periods=3, tz="US/Pacific")}
        )
        assert expected.to_sql("test_datetime_tz", self.conn, index=False) == 3
 
        if self.flavor == "postgresql":
            # SQLAlchemy "timezones" (i.e. offsets) are coerced to UTC
            expected["A"] = expected["A"].dt.tz_convert("UTC")
        else:
            # Otherwise, timestamps are returned as local, naive
            expected["A"] = expected["A"].dt.tz_localize(None)
 
        result = sql.read_sql_table("test_datetime_tz", self.conn)
        tm.assert_frame_equal(result, expected)
 
        result = sql.read_sql_query("SELECT * FROM test_datetime_tz", self.conn)
        if self.flavor == "sqlite":
            # read_sql_query does not return datetime type like read_sql_table
            assert isinstance(result.loc[0, "A"], str)
            result["A"] = to_datetime(result["A"])
        tm.assert_frame_equal(result, expected)
 
    def test_out_of_bounds_datetime(self):
        # GH 26761
        data = DataFrame({"date": datetime(9999, 1, 1)}, index=[0])
        assert data.to_sql("test_datetime_obb", self.conn, index=False) == 1
        result = sql.read_sql_table("test_datetime_obb", self.conn)
        expected = DataFrame([pd.NaT], columns=["date"])
        tm.assert_frame_equal(result, expected)
 
    def test_naive_datetimeindex_roundtrip(self):
        # GH 23510
        # Ensure that a naive DatetimeIndex isn't converted to UTC
        dates = date_range("2018-01-01", periods=5, freq="6H")._with_freq(None)
        expected = DataFrame({"nums": range(5)}, index=dates)
        assert expected.to_sql("foo_table", self.conn, index_label="info_date") == 5
        result = sql.read_sql_table("foo_table", self.conn, index_col="info_date")
        # result index with gain a name from a set_index operation; expected
        tm.assert_frame_equal(result, expected, check_names=False)
 
    def test_date_parsing(self):
        # No Parsing
        df = sql.read_sql_table("types", self.conn)
        expected_type = object if self.flavor == "sqlite" else np.datetime64
        assert issubclass(df.DateCol.dtype.type, expected_type)
 
        df = sql.read_sql_table("types", self.conn, parse_dates=["DateCol"])
        assert issubclass(df.DateCol.dtype.type, np.datetime64)
 
        df = sql.read_sql_table(
            "types", self.conn, parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"}
        )
        assert issubclass(df.DateCol.dtype.type, np.datetime64)
 
        df = sql.read_sql_table(
            "types",
            self.conn,
            parse_dates={"DateCol": {"format": "%Y-%m-%d %H:%M:%S"}},
        )
        assert issubclass(df.DateCol.dtype.type, np.datetime64)
 
        df = sql.read_sql_table("types", self.conn, parse_dates=["IntDateCol"])
        assert issubclass(df.IntDateCol.dtype.type, np.datetime64)
 
        df = sql.read_sql_table("types", self.conn, parse_dates={"IntDateCol": "s"})
        assert issubclass(df.IntDateCol.dtype.type, np.datetime64)
 
        df = sql.read_sql_table(
            "types", self.conn, parse_dates={"IntDateCol": {"unit": "s"}}
        )
        assert issubclass(df.IntDateCol.dtype.type, np.datetime64)
 
    def test_datetime(self):
        df = DataFrame(
            {"A": date_range("2013-01-01 09:00:00", periods=3), "B": np.arange(3.0)}
        )
        assert df.to_sql("test_datetime", self.conn) == 3
 
        # with read_table -> type information from schema used
        result = sql.read_sql_table("test_datetime", self.conn)
        result = result.drop("index", axis=1)
        tm.assert_frame_equal(result, df)
 
        # with read_sql -> no type information -> sqlite has no native
        result = sql.read_sql_query("SELECT * FROM test_datetime", self.conn)
        result = result.drop("index", axis=1)
        if self.flavor == "sqlite":
            assert isinstance(result.loc[0, "A"], str)
            result["A"] = to_datetime(result["A"])
            tm.assert_frame_equal(result, df)
        else:
            tm.assert_frame_equal(result, df)
 
    def test_datetime_NaT(self):
        df = DataFrame(
            {"A": date_range("2013-01-01 09:00:00", periods=3), "B": np.arange(3.0)}
        )
        df.loc[1, "A"] = np.nan
        assert df.to_sql("test_datetime", self.conn, index=False) == 3
 
        # with read_table -> type information from schema used
        result = sql.read_sql_table("test_datetime", self.conn)
        tm.assert_frame_equal(result, df)
 
        # with read_sql -> no type information -> sqlite has no native
        result = sql.read_sql_query("SELECT * FROM test_datetime", self.conn)
        if self.flavor == "sqlite":
            assert isinstance(result.loc[0, "A"], str)
            result["A"] = to_datetime(result["A"], errors="coerce")
            tm.assert_frame_equal(result, df)
        else:
            tm.assert_frame_equal(result, df)
 
    def test_datetime_date(self):
        # test support for datetime.date
        df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"])
        assert df.to_sql("test_date", self.conn, index=False) == 2
        res = read_sql_table("test_date", self.conn)
        result = res["a"]
        expected = to_datetime(df["a"])
        # comes back as datetime64
        tm.assert_series_equal(result, expected)
 
    def test_datetime_time(self, sqlite_buildin):
        # test support for datetime.time
        df = DataFrame([time(9, 0, 0), time(9, 1, 30)], columns=["a"])
        assert df.to_sql("test_time", self.conn, index=False) == 2
        res = read_sql_table("test_time", self.conn)
        tm.assert_frame_equal(res, df)
 
        # GH8341
        # first, use the fallback to have the sqlite adapter put in place
        sqlite_conn = sqlite_buildin
        assert sql.to_sql(df, "test_time2", sqlite_conn, index=False) == 2
        res = sql.read_sql_query("SELECT * FROM test_time2", sqlite_conn)
        ref = df.applymap(lambda _: _.strftime("%H:%M:%S.%f"))
        tm.assert_frame_equal(ref, res)  # check if adapter is in place
        # then test if sqlalchemy is unaffected by the sqlite adapter
        assert sql.to_sql(df, "test_time3", self.conn, index=False) == 2
        if self.flavor == "sqlite":
            res = sql.read_sql_query("SELECT * FROM test_time3", self.conn)
            ref = df.applymap(lambda _: _.strftime("%H:%M:%S.%f"))
            tm.assert_frame_equal(ref, res)
        res = sql.read_sql_table("test_time3", self.conn)
        tm.assert_frame_equal(df, res)
 
    def test_mixed_dtype_insert(self):
        # see GH6509
        s1 = Series(2**25 + 1, dtype=np.int32)
        s2 = Series(0.0, dtype=np.float32)
        df = DataFrame({"s1": s1, "s2": s2})
 
        # write and read again
        assert df.to_sql("test_read_write", self.conn, index=False) == 1
        df2 = sql.read_sql_table("test_read_write", self.conn)
 
        tm.assert_frame_equal(df, df2, check_dtype=False, check_exact=True)
 
    def test_nan_numeric(self):
        # NaNs in numeric float column
        df = DataFrame({"A": [0, 1, 2], "B": [0.2, np.nan, 5.6]})
        assert df.to_sql("test_nan", self.conn, index=False) == 3
 
        # with read_table
        result = sql.read_sql_table("test_nan", self.conn)
        tm.assert_frame_equal(result, df)
 
        # with read_sql
        result = sql.read_sql_query("SELECT * FROM test_nan", self.conn)
        tm.assert_frame_equal(result, df)
 
    def test_nan_fullcolumn(self):
        # full NaN column (numeric float column)
        df = DataFrame({"A": [0, 1, 2], "B": [np.nan, np.nan, np.nan]})
        assert df.to_sql("test_nan", self.conn, index=False) == 3
 
        # with read_table
        result = sql.read_sql_table("test_nan", self.conn)
        tm.assert_frame_equal(result, df)
 
        # with read_sql -> not type info from table -> stays None
        df["B"] = df["B"].astype("object")
        df["B"] = None
        result = sql.read_sql_query("SELECT * FROM test_nan", self.conn)
        tm.assert_frame_equal(result, df)
 
    def test_nan_string(self):
        # NaNs in string column
        df = DataFrame({"A": [0, 1, 2], "B": ["a", "b", np.nan]})
        assert df.to_sql("test_nan", self.conn, index=False) == 3
 
        # NaNs are coming back as None
        df.loc[2, "B"] = None
 
        # with read_table
        result = sql.read_sql_table("test_nan", self.conn)
        tm.assert_frame_equal(result, df)
 
        # with read_sql
        result = sql.read_sql_query("SELECT * FROM test_nan", self.conn)
        tm.assert_frame_equal(result, df)
 
    def _get_index_columns(self, tbl_name):
        from sqlalchemy import inspect
 
        insp = inspect(self.conn)
 
        ixs = insp.get_indexes(tbl_name)
        ixs = [i["column_names"] for i in ixs]
        return ixs
 
    def test_to_sql_save_index(self):
        self._to_sql_save_index()
 
    def test_transactions(self):
        self._transaction_test()
 
    def test_get_schema_create_table(self, test_frame3):
        # Use a dataframe without a bool column, since MySQL converts bool to
        # TINYINT (which read_sql_table returns as an int and causes a dtype
        # mismatch)
        from sqlalchemy import text
        from sqlalchemy.engine import Engine
 
        tbl = "test_get_schema_create_table"
        create_sql = sql.get_schema(test_frame3, tbl, con=self.conn)
        blank_test_df = test_frame3.iloc[:0]
 
        self.drop_table(tbl, self.conn)
        create_sql = text(create_sql)
        if isinstance(self.conn, Engine):
            with self.conn.connect() as conn:
                with conn.begin():
                    conn.execute(create_sql)
        else:
            with self.conn.begin():
                self.conn.execute(create_sql)
        returned_df = sql.read_sql_table(tbl, self.conn)
        tm.assert_frame_equal(returned_df, blank_test_df, check_index_type=False)
        self.drop_table(tbl, self.conn)
 
    def test_dtype(self):
        from sqlalchemy import (
            TEXT,
            String,
        )
        from sqlalchemy.schema import MetaData
 
        cols = ["A", "B"]
        data = [(0.8, True), (0.9, None)]
        df = DataFrame(data, columns=cols)
        assert df.to_sql("dtype_test", self.conn) == 2
        assert df.to_sql("dtype_test2", self.conn, dtype={"B": TEXT}) == 2
        meta = MetaData()
        meta.reflect(bind=self.conn)
        sqltype = meta.tables["dtype_test2"].columns["B"].type
        assert isinstance(sqltype, TEXT)
        msg = "The type of B is not a SQLAlchemy type"
        with pytest.raises(ValueError, match=msg):
            df.to_sql("error", self.conn, dtype={"B": str})
 
        # GH9083
        assert df.to_sql("dtype_test3", self.conn, dtype={"B": String(10)}) == 2
        meta.reflect(bind=self.conn)
        sqltype = meta.tables["dtype_test3"].columns["B"].type
        assert isinstance(sqltype, String)
        assert sqltype.length == 10
 
        # single dtype
        assert df.to_sql("single_dtype_test", self.conn, dtype=TEXT) == 2
        meta.reflect(bind=self.conn)
        sqltypea = meta.tables["single_dtype_test"].columns["A"].type
        sqltypeb = meta.tables["single_dtype_test"].columns["B"].type
        assert isinstance(sqltypea, TEXT)
        assert isinstance(sqltypeb, TEXT)
 
    def test_notna_dtype(self):
        from sqlalchemy import (
            Boolean,
            DateTime,
            Float,
            Integer,
        )
        from sqlalchemy.schema import MetaData
 
        cols = {
            "Bool": Series([True, None]),
            "Date": Series([datetime(2012, 5, 1), None]),
            "Int": Series([1, None], dtype="object"),
            "Float": Series([1.1, None]),
        }
        df = DataFrame(cols)
 
        tbl = "notna_dtype_test"
        assert df.to_sql(tbl, self.conn) == 2
        _ = sql.read_sql_table(tbl, self.conn)
        meta = MetaData()
        meta.reflect(bind=self.conn)
        my_type = Integer if self.flavor == "mysql" else Boolean
        col_dict = meta.tables[tbl].columns
        assert isinstance(col_dict["Bool"].type, my_type)
        assert isinstance(col_dict["Date"].type, DateTime)
        assert isinstance(col_dict["Int"].type, Integer)
        assert isinstance(col_dict["Float"].type, Float)
 
    def test_double_precision(self):
        from sqlalchemy import (
            BigInteger,
            Float,
            Integer,
        )
        from sqlalchemy.schema import MetaData
 
        V = 1.23456789101112131415
 
        df = DataFrame(
            {
                "f32": Series([V], dtype="float32"),
                "f64": Series([V], dtype="float64"),
                "f64_as_f32": Series([V], dtype="float64"),
                "i32": Series([5], dtype="int32"),
                "i64": Series([5], dtype="int64"),
            }
        )
 
        assert (
            df.to_sql(
                "test_dtypes",
                self.conn,
                index=False,
                if_exists="replace",
                dtype={"f64_as_f32": Float(precision=23)},
            )
            == 1
        )
        res = sql.read_sql_table("test_dtypes", self.conn)
 
        # check precision of float64
        assert np.round(df["f64"].iloc[0], 14) == np.round(res["f64"].iloc[0], 14)
 
        # check sql types
        meta = MetaData()
        meta.reflect(bind=self.conn)
        col_dict = meta.tables["test_dtypes"].columns
        assert str(col_dict["f32"].type) == str(col_dict["f64_as_f32"].type)
        assert isinstance(col_dict["f32"].type, Float)
        assert isinstance(col_dict["f64"].type, Float)
        assert isinstance(col_dict["i32"].type, Integer)
        assert isinstance(col_dict["i64"].type, BigInteger)
 
    def test_connectable_issue_example(self):
        # This tests the example raised in issue
        # https://github.com/pandas-dev/pandas/issues/10104
        from sqlalchemy.engine import Engine
 
        def test_select(connection):
            query = "SELECT test_foo_data FROM test_foo_data"
            return sql.read_sql_query(query, con=connection)
 
        def test_append(connection, data):
            data.to_sql(name="test_foo_data", con=connection, if_exists="append")
 
        def test_connectable(conn):
            # https://github.com/sqlalchemy/sqlalchemy/commit/
            # 00b5c10846e800304caa86549ab9da373b42fa5d#r48323973
            foo_data = test_select(conn)
            test_append(conn, foo_data)
 
        def main(connectable):
            if isinstance(connectable, Engine):
                with connectable.connect() as conn:
                    with conn.begin():
                        test_connectable(conn)
            else:
                test_connectable(connectable)
 
        assert (
            DataFrame({"test_foo_data": [0, 1, 2]}).to_sql("test_foo_data", self.conn)
            == 3
        )
        main(self.conn)
 
    @pytest.mark.parametrize(
        "input",
        [{"foo": [np.inf]}, {"foo": [-np.inf]}, {"foo": [-np.inf], "infe0": ["bar"]}],
    )
    def test_to_sql_with_negative_npinf(self, input, request):
        # GH 34431
 
        df = DataFrame(input)
 
        if self.flavor == "mysql":
            # GH 36465
            # The input {"foo": [-np.inf], "infe0": ["bar"]} does not raise any error
            # for pymysql version >= 0.10
            # TODO(GH#36465): remove this version check after GH 36465 is fixed
            pymysql = pytest.importorskip("pymysql")
 
            if (
                Version(pymysql.__version__) < Version("1.0.3")
                and "infe0" in df.columns
            ):
                mark = pytest.mark.xfail(reason="GH 36465")
                request.node.add_marker(mark)
 
            msg = "inf cannot be used with MySQL"
            with pytest.raises(ValueError, match=msg):
                df.to_sql("foobar", self.conn, index=False)
        else:
            assert df.to_sql("foobar", self.conn, index=False) == 1
            res = sql.read_sql_table("foobar", self.conn)
            tm.assert_equal(df, res)
 
    def test_temporary_table(self):
        from sqlalchemy import (
            Column,
            Integer,
            Unicode,
            select,
        )
        from sqlalchemy.orm import (
            Session,
            declarative_base,
        )
 
        test_data = "Hello, World!"
        expected = DataFrame({"spam": [test_data]})
        Base = declarative_base()
 
        class Temporary(Base):
            __tablename__ = "temp_test"
            __table_args__ = {"prefixes": ["TEMPORARY"]}
            id = Column(Integer, primary_key=True)
            spam = Column(Unicode(30), nullable=False)
 
        with Session(self.conn) as session:
            with session.begin():
                conn = session.connection()
                Temporary.__table__.create(conn)
                session.add(Temporary(spam=test_data))
                session.flush()
                df = sql.read_sql_query(sql=select(Temporary.spam), con=conn)
        tm.assert_frame_equal(df, expected)
 
    # -- SQL Engine tests (in the base class for now)
    def test_invalid_engine(self, test_frame1):
        msg = "engine must be one of 'auto', 'sqlalchemy'"
        with pytest.raises(ValueError, match=msg):
            self._to_sql_with_sql_engine(test_frame1, "bad_engine")
 
    def test_options_sqlalchemy(self, test_frame1):
        # use the set option
        with pd.option_context("io.sql.engine", "sqlalchemy"):
            self._to_sql_with_sql_engine(test_frame1)
 
    def test_options_auto(self, test_frame1):
        # use the set option
        with pd.option_context("io.sql.engine", "auto"):
            self._to_sql_with_sql_engine(test_frame1)
 
    def test_options_get_engine(self):
        assert isinstance(get_engine("sqlalchemy"), SQLAlchemyEngine)
 
        with pd.option_context("io.sql.engine", "sqlalchemy"):
            assert isinstance(get_engine("auto"), SQLAlchemyEngine)
            assert isinstance(get_engine("sqlalchemy"), SQLAlchemyEngine)
 
        with pd.option_context("io.sql.engine", "auto"):
            assert isinstance(get_engine("auto"), SQLAlchemyEngine)
            assert isinstance(get_engine("sqlalchemy"), SQLAlchemyEngine)
 
    def test_get_engine_auto_error_message(self):
        # Expect different error messages from get_engine(engine="auto")
        # if engines aren't installed vs. are installed but bad version
        pass
        # TODO(GH#36893) fill this in when we add more engines
 
    @pytest.mark.parametrize("func", ["read_sql", "read_sql_query"])
    def test_read_sql_dtype_backend(self, string_storage, func, dtype_backend):
        # GH#50048
        table = "test"
        df = self.dtype_backend_data()
        df.to_sql(table, self.conn, index=False, if_exists="replace")
 
        with pd.option_context("mode.string_storage", string_storage):
            result = getattr(pd, func)(
                f"Select * from {table}", self.conn, dtype_backend=dtype_backend
            )
        expected = self.dtype_backend_expected(string_storage, dtype_backend)
        tm.assert_frame_equal(result, expected)
 
        with pd.option_context("mode.string_storage", string_storage):
            iterator = getattr(pd, func)(
                f"Select * from {table}",
                self.conn,
                dtype_backend=dtype_backend,
                chunksize=3,
            )
            expected = self.dtype_backend_expected(string_storage, dtype_backend)
            for result in iterator:
                tm.assert_frame_equal(result, expected)
 
    @pytest.mark.parametrize("func", ["read_sql", "read_sql_table"])
    def test_read_sql_dtype_backend_table(self, string_storage, func, dtype_backend):
        # GH#50048
        table = "test"
        df = self.dtype_backend_data()
        df.to_sql(table, self.conn, index=False, if_exists="replace")
 
        with pd.option_context("mode.string_storage", string_storage):
            result = getattr(pd, func)(table, self.conn, dtype_backend=dtype_backend)
        expected = self.dtype_backend_expected(string_storage, dtype_backend)
        tm.assert_frame_equal(result, expected)
 
        with pd.option_context("mode.string_storage", string_storage):
            iterator = getattr(pd, func)(
                table,
                self.conn,
                dtype_backend=dtype_backend,
                chunksize=3,
            )
            expected = self.dtype_backend_expected(string_storage, dtype_backend)
            for result in iterator:
                tm.assert_frame_equal(result, expected)
 
    @pytest.mark.parametrize("func", ["read_sql", "read_sql_table", "read_sql_query"])
    def test_read_sql_invalid_dtype_backend_table(self, func):
        table = "test"
        df = self.dtype_backend_data()
        df.to_sql(table, self.conn, index=False, if_exists="replace")
 
        msg = (
            "dtype_backend numpy is invalid, only 'numpy_nullable' and "
            "'pyarrow' are allowed."
        )
        with pytest.raises(ValueError, match=msg):
            getattr(pd, func)(table, self.conn, dtype_backend="numpy")
 
    def dtype_backend_data(self) -> DataFrame:
        return DataFrame(
            {
                "a": Series([1, np.nan, 3], dtype="Int64"),
                "b": Series([1, 2, 3], dtype="Int64"),
                "c": Series([1.5, np.nan, 2.5], dtype="Float64"),
                "d": Series([1.5, 2.0, 2.5], dtype="Float64"),
                "e": [True, False, None],
                "f": [True, False, True],
                "g": ["a", "b", "c"],
                "h": ["a", "b", None],
            }
        )
 
    def dtype_backend_expected(self, storage, dtype_backend) -> DataFrame:
        string_array: StringArray | ArrowStringArray
        string_array_na: StringArray | ArrowStringArray
        if storage == "python":
            string_array = StringArray(np.array(["a", "b", "c"], dtype=np.object_))
            string_array_na = StringArray(np.array(["a", "b", pd.NA], dtype=np.object_))
 
        else:
            pa = pytest.importorskip("pyarrow")
            string_array = ArrowStringArray(pa.array(["a", "b", "c"]))
            string_array_na = ArrowStringArray(pa.array(["a", "b", None]))
 
        df = DataFrame(
            {
                "a": Series([1, np.nan, 3], dtype="Int64"),
                "b": Series([1, 2, 3], dtype="Int64"),
                "c": Series([1.5, np.nan, 2.5], dtype="Float64"),
                "d": Series([1.5, 2.0, 2.5], dtype="Float64"),
                "e": Series([True, False, pd.NA], dtype="boolean"),
                "f": Series([True, False, True], dtype="boolean"),
                "g": string_array,
                "h": string_array_na,
            }
        )
        if dtype_backend == "pyarrow":
            pa = pytest.importorskip("pyarrow")
 
            from pandas.arrays import ArrowExtensionArray
 
            df = DataFrame(
                {
                    col: ArrowExtensionArray(pa.array(df[col], from_pandas=True))
                    for col in df.columns
                }
            )
        return df
 
    def test_chunksize_empty_dtypes(self):
        # GH#50245
        dtypes = {"a": "int64", "b": "object"}
        df = DataFrame(columns=["a", "b"]).astype(dtypes)
        expected = df.copy()
        df.to_sql("test", self.conn, index=False, if_exists="replace")
 
        for result in read_sql_query(
            "SELECT * FROM test",
            self.conn,
            dtype=dtypes,
            chunksize=1,
        ):
            tm.assert_frame_equal(result, expected)
 
    @pytest.mark.parametrize("dtype_backend", [lib.no_default, "numpy_nullable"])
    @pytest.mark.parametrize("func", ["read_sql", "read_sql_query"])
    def test_read_sql_dtype(self, func, dtype_backend):
        # GH#50797
        table = "test"
        df = DataFrame({"a": [1, 2, 3], "b": 5})
        df.to_sql(table, self.conn, index=False, if_exists="replace")
 
        result = getattr(pd, func)(
            f"Select * from {table}",
            self.conn,
            dtype={"a": np.float64},
            dtype_backend=dtype_backend,
        )
        expected = DataFrame(
            {
                "a": Series([1, 2, 3], dtype=np.float64),
                "b": Series(
                    [5, 5, 5],
                    dtype="int64" if not dtype_backend == "numpy_nullable" else "Int64",
                ),
            }
        )
        tm.assert_frame_equal(result, expected)
 
 
class TestSQLiteAlchemy(_TestSQLAlchemy):
    """
    Test the sqlalchemy backend against an in-memory sqlite database.
 
    """
 
    flavor = "sqlite"
 
    @classmethod
    def setup_engine(cls):
        cls.engine = sqlalchemy.create_engine("sqlite:///:memory:")
 
    @classmethod
    def setup_driver(cls):
        # sqlite3 is built-in
        cls.driver = None
 
    def test_default_type_conversion(self):
        df = sql.read_sql_table("types", self.conn)
 
        assert issubclass(df.FloatCol.dtype.type, np.floating)
        assert issubclass(df.IntCol.dtype.type, np.integer)
 
        # sqlite has no boolean type, so integer type is returned
        assert issubclass(df.BoolCol.dtype.type, np.integer)
 
        # Int column with NA values stays as float
        assert issubclass(df.IntColWithNull.dtype.type, np.floating)
 
        # Non-native Bool column with NA values stays as float
        assert issubclass(df.BoolColWithNull.dtype.type, np.floating)
 
    def test_default_date_load(self):
        df = sql.read_sql_table("types", self.conn)
 
        # IMPORTANT - sqlite has no native date type, so shouldn't parse, but
        assert not issubclass(df.DateCol.dtype.type, np.datetime64)
 
    def test_bigint_warning(self):
        # test no warning for BIGINT (to support int64) is raised (GH7433)
        df = DataFrame({"a": [1, 2]}, dtype="int64")
        assert df.to_sql("test_bigintwarning", self.conn, index=False) == 2
 
        with tm.assert_produces_warning(None):
            sql.read_sql_table("test_bigintwarning", self.conn)
 
    def test_row_object_is_named_tuple(self):
        # GH 40682
        # Test for the is_named_tuple() function
        # Placed here due to its usage of sqlalchemy
 
        from sqlalchemy import (
            Column,
            Integer,
            String,
        )
        from sqlalchemy.orm import (
            declarative_base,
            sessionmaker,
        )
 
        BaseModel = declarative_base()
 
        class Test(BaseModel):
            __tablename__ = "test_frame"
            id = Column(Integer, primary_key=True)
            string_column = Column(String(50))
 
        with self.conn.begin():
            BaseModel.metadata.create_all(self.conn)
        Session = sessionmaker(bind=self.conn)
        with Session() as session:
            df = DataFrame({"id": [0, 1], "string_column": ["hello", "world"]})
            assert (
                df.to_sql("test_frame", con=self.conn, index=False, if_exists="replace")
                == 2
            )
            session.commit()
            test_query = session.query(Test.id, Test.string_column)
            df = DataFrame(test_query)
 
        assert list(df.columns) == ["id", "string_column"]
 
    def dtype_backend_expected(self, storage, dtype_backend) -> DataFrame:
        df = super().dtype_backend_expected(storage, dtype_backend)
        if dtype_backend == "numpy_nullable":
            df = df.astype({"e": "Int64", "f": "Int64"})
        else:
            df = df.astype({"e": "int64[pyarrow]", "f": "int64[pyarrow]"})
 
        return df
 
    @pytest.mark.parametrize("func", ["read_sql", "read_sql_table"])
    def test_read_sql_dtype_backend_table(self, string_storage, func):
        # GH#50048 Not supported for sqlite
        pass
 
 
@pytest.mark.db
class TestMySQLAlchemy(_TestSQLAlchemy):
    """
    Test the sqlalchemy backend against an MySQL database.
 
    """
 
    flavor = "mysql"
    port = 3306
 
    @classmethod
    def setup_engine(cls):
        cls.engine = sqlalchemy.create_engine(
            f"mysql+{cls.driver}://root@localhost:{cls.port}/pandas",
            connect_args=cls.connect_args,
        )
 
    @classmethod
    def setup_driver(cls):
        pymysql = pytest.importorskip("pymysql")
        cls.driver = "pymysql"
        cls.connect_args = {"client_flag": pymysql.constants.CLIENT.MULTI_STATEMENTS}
 
    def test_default_type_conversion(self):
        pass
 
    def dtype_backend_expected(self, storage, dtype_backend) -> DataFrame:
        df = super().dtype_backend_expected(storage, dtype_backend)
        if dtype_backend == "numpy_nullable":
            df = df.astype({"e": "Int64", "f": "Int64"})
        else:
            df = df.astype({"e": "int64[pyarrow]", "f": "int64[pyarrow]"})
 
        return df
 
 
@pytest.mark.db
class TestPostgreSQLAlchemy(_TestSQLAlchemy):
    """
    Test the sqlalchemy backend against an PostgreSQL database.
 
    """
 
    flavor = "postgresql"
    port = 5432
 
    @classmethod
    def setup_engine(cls):
        cls.engine = sqlalchemy.create_engine(
            f"postgresql+{cls.driver}://postgres:postgres@localhost:{cls.port}/pandas"
        )
 
    @classmethod
    def setup_driver(cls):
        pytest.importorskip("psycopg2")
        cls.driver = "psycopg2"
 
    def test_schema_support(self):
        from sqlalchemy.engine import Engine
 
        # only test this for postgresql (schema's not supported in
        # mysql/sqlite)
        df = DataFrame({"col1": [1, 2], "col2": [0.1, 0.2], "col3": ["a", "n"]})
 
        # create a schema
        with self.conn.begin():
            self.conn.exec_driver_sql("DROP SCHEMA IF EXISTS other CASCADE;")
            self.conn.exec_driver_sql("CREATE SCHEMA other;")
 
        # write dataframe to different schema's
        assert df.to_sql("test_schema_public", self.conn, index=False) == 2
        assert (
            df.to_sql(
                "test_schema_public_explicit", self.conn, index=False, schema="public"
            )
            == 2
        )
        assert (
            df.to_sql("test_schema_other", self.conn, index=False, schema="other") == 2
        )
 
        # read dataframes back in
        res1 = sql.read_sql_table("test_schema_public", self.conn)
        tm.assert_frame_equal(df, res1)
        res2 = sql.read_sql_table("test_schema_public_explicit", self.conn)
        tm.assert_frame_equal(df, res2)
        res3 = sql.read_sql_table(
            "test_schema_public_explicit", self.conn, schema="public"
        )
        tm.assert_frame_equal(df, res3)
        res4 = sql.read_sql_table("test_schema_other", self.conn, schema="other")
        tm.assert_frame_equal(df, res4)
        msg = "Table test_schema_other not found"
        with pytest.raises(ValueError, match=msg):
            sql.read_sql_table("test_schema_other", self.conn, schema="public")
 
        # different if_exists options
 
        # create a schema
        with self.conn.begin():
            self.conn.exec_driver_sql("DROP SCHEMA IF EXISTS other CASCADE;")
            self.conn.exec_driver_sql("CREATE SCHEMA other;")
 
        # write dataframe with different if_exists options
        assert (
            df.to_sql("test_schema_other", self.conn, schema="other", index=False) == 2
        )
        df.to_sql(
            "test_schema_other",
            self.conn,
            schema="other",
            index=False,
            if_exists="replace",
        )
        assert (
            df.to_sql(
                "test_schema_other",
                self.conn,
                schema="other",
                index=False,
                if_exists="append",
            )
            == 2
        )
        res = sql.read_sql_table("test_schema_other", self.conn, schema="other")
        tm.assert_frame_equal(concat([df, df], ignore_index=True), res)
 
        # specifying schema in user-provided meta
 
        # The schema won't be applied on another Connection
        # because of transactional schemas
        if isinstance(self.conn, Engine):
            engine2 = self.connect()
            pdsql = sql.SQLDatabase(engine2, schema="other")
            assert pdsql.to_sql(df, "test_schema_other2", index=False) == 2
            assert (
                pdsql.to_sql(df, "test_schema_other2", index=False, if_exists="replace")
                == 2
            )
            assert (
                pdsql.to_sql(df, "test_schema_other2", index=False, if_exists="append")
                == 2
            )
            res1 = sql.read_sql_table("test_schema_other2", self.conn, schema="other")
            res2 = pdsql.read_table("test_schema_other2")
            tm.assert_frame_equal(res1, res2)
 
 
# -----------------------------------------------------------------------------
# -- Test Sqlite / MySQL fallback
 
 
class TestSQLiteFallback(SQLiteMixIn, PandasSQLTest):
    """
    Test the fallback mode against an in-memory sqlite database.
 
    """
 
    flavor = "sqlite"
 
    @pytest.fixture(autouse=True)
    def setup_method(self, iris_path, types_data):
        self.conn = self.connect()
        self.load_iris_data(iris_path)
        self.load_types_data(types_data)
        self.pandasSQL = sql.SQLiteDatabase(self.conn)
 
    def test_read_sql_parameter(self):
        self._read_sql_iris_parameter()
 
    def test_read_sql_named_parameter(self):
        self._read_sql_iris_named_parameter()
 
    def test_to_sql_empty(self, test_frame1):
        self._to_sql_empty(test_frame1)
 
    def test_create_and_drop_table(self):
        temp_frame = DataFrame(
            {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]}
        )
 
        assert self.pandasSQL.to_sql(temp_frame, "drop_test_frame") == 4
 
        assert self.pandasSQL.has_table("drop_test_frame")
 
        self.pandasSQL.drop_table("drop_test_frame")
 
        assert not self.pandasSQL.has_table("drop_test_frame")
 
    def test_roundtrip(self, test_frame1):
        self._roundtrip(test_frame1)
 
    def test_execute_sql(self):
        self._execute_sql()
 
    def test_datetime_date(self):
        # test support for datetime.date
        df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"])
        assert df.to_sql("test_date", self.conn, index=False) == 2
        res = read_sql_query("SELECT * FROM test_date", self.conn)
        if self.flavor == "sqlite":
            # comes back as strings
            tm.assert_frame_equal(res, df.astype(str))
        elif self.flavor == "mysql":
            tm.assert_frame_equal(res, df)
 
    @pytest.mark.parametrize("tz_aware", [False, True])
    def test_datetime_time(self, tz_aware):
        # test support for datetime.time, GH #8341
        if not tz_aware:
            tz_times = [time(9, 0, 0), time(9, 1, 30)]
        else:
            tz_dt = date_range("2013-01-01 09:00:00", periods=2, tz="US/Pacific")
            tz_times = Series(tz_dt.to_pydatetime()).map(lambda dt: dt.timetz())
 
        df = DataFrame(tz_times, columns=["a"])
 
        assert df.to_sql("test_time", self.conn, index=False) == 2
        res = read_sql_query("SELECT * FROM test_time", self.conn)
        if self.flavor == "sqlite":
            # comes back as strings
            expected = df.applymap(lambda _: _.strftime("%H:%M:%S.%f"))
            tm.assert_frame_equal(res, expected)
 
    def _get_index_columns(self, tbl_name):
        ixs = sql.read_sql_query(
            "SELECT * FROM sqlite_master WHERE type = 'index' "
            + f"AND tbl_name = '{tbl_name}'",
            self.conn,
        )
        ix_cols = []
        for ix_name in ixs.name:
            ix_info = sql.read_sql_query(f"PRAGMA index_info({ix_name})", self.conn)
            ix_cols.append(ix_info.name.tolist())
        return ix_cols
 
    def test_to_sql_save_index(self):
        self._to_sql_save_index()
 
    def test_transactions(self):
        self._transaction_test()
 
    def _get_sqlite_column_type(self, table, column):
        recs = self.conn.execute(f"PRAGMA table_info({table})")
        for cid, name, ctype, not_null, default, pk in recs:
            if name == column:
                return ctype
        raise ValueError(f"Table {table}, column {column} not found")
 
    def test_dtype(self):
        if self.flavor == "mysql":
            pytest.skip("Not applicable to MySQL legacy")
        cols = ["A", "B"]
        data = [(0.8, True), (0.9, None)]
        df = DataFrame(data, columns=cols)
        assert df.to_sql("dtype_test", self.conn) == 2
        assert df.to_sql("dtype_test2", self.conn, dtype={"B": "STRING"}) == 2
 
        # sqlite stores Boolean values as INTEGER
        assert self._get_sqlite_column_type("dtype_test", "B") == "INTEGER"
 
        assert self._get_sqlite_column_type("dtype_test2", "B") == "STRING"
        msg = r"B \(<class 'bool'>\) not a string"
        with pytest.raises(ValueError, match=msg):
            df.to_sql("error", self.conn, dtype={"B": bool})
 
        # single dtype
        assert df.to_sql("single_dtype_test", self.conn, dtype="STRING") == 2
        assert self._get_sqlite_column_type("single_dtype_test", "A") == "STRING"
        assert self._get_sqlite_column_type("single_dtype_test", "B") == "STRING"
 
    def test_notna_dtype(self):
        if self.flavor == "mysql":
            pytest.skip("Not applicable to MySQL legacy")
 
        cols = {
            "Bool": Series([True, None]),
            "Date": Series([datetime(2012, 5, 1), None]),
            "Int": Series([1, None], dtype="object"),
            "Float": Series([1.1, None]),
        }
        df = DataFrame(cols)
 
        tbl = "notna_dtype_test"
        assert df.to_sql(tbl, self.conn) == 2
 
        assert self._get_sqlite_column_type(tbl, "Bool") == "INTEGER"
        assert self._get_sqlite_column_type(tbl, "Date") == "TIMESTAMP"
        assert self._get_sqlite_column_type(tbl, "Int") == "INTEGER"
        assert self._get_sqlite_column_type(tbl, "Float") == "REAL"
 
    def test_illegal_names(self):
        # For sqlite, these should work fine
        df = DataFrame([[1, 2], [3, 4]], columns=["a", "b"])
 
        msg = "Empty table or column name specified"
        with pytest.raises(ValueError, match=msg):
            df.to_sql("", self.conn)
 
        for ndx, weird_name in enumerate(
            [
                "test_weird_name]",
                "test_weird_name[",
                "test_weird_name`",
                'test_weird_name"',
                "test_weird_name'",
                "_b.test_weird_name_01-30",
                '"_b.test_weird_name_01-30"',
                "99beginswithnumber",
                "12345",
                "\xe9",
            ]
        ):
            assert df.to_sql(weird_name, self.conn) == 2
            sql.table_exists(weird_name, self.conn)
 
            df2 = DataFrame([[1, 2], [3, 4]], columns=["a", weird_name])
            c_tbl = f"test_weird_col_name{ndx:d}"
            assert df2.to_sql(c_tbl, self.conn) == 2
            sql.table_exists(c_tbl, self.conn)
 
 
# -----------------------------------------------------------------------------
# -- Old tests from 0.13.1 (before refactor using sqlalchemy)
 
 
_formatters = {
    datetime: "'{}'".format,
    str: "'{}'".format,
    np.str_: "'{}'".format,
    bytes: "'{}'".format,
    float: "{:.8f}".format,
    int: "{:d}".format,
    type(None): lambda x: "NULL",
    np.float64: "{:.10f}".format,
    bool: "'{!s}'".format,
}
 
 
def format_query(sql, *args):
    processed_args = []
    for arg in args:
        if isinstance(arg, float) and isna(arg):
            arg = None
 
        formatter = _formatters[type(arg)]
        processed_args.append(formatter(arg))
 
    return sql % tuple(processed_args)
 
 
def tquery(query, con=None):
    """Replace removed sql.tquery function"""
    with sql.pandasSQL_builder(con) as pandas_sql:
        res = pandas_sql.execute(query).fetchall()
    return None if res is None else list(res)
 
 
class TestXSQLite:
    def drop_table(self, table_name, conn):
        cur = conn.cursor()
        cur.execute(f"DROP TABLE IF EXISTS {sql._get_valid_sqlite_name(table_name)}")
        conn.commit()
 
    def test_basic(self, sqlite_buildin):
        frame = tm.makeTimeDataFrame()
        assert (
            sql.to_sql(frame, name="test_table", con=sqlite_buildin, index=False) == 30
        )
        result = sql.read_sql("select * from test_table", sqlite_buildin)
 
        # HACK! Change this once indexes are handled properly.
        result.index = frame.index
 
        expected = frame
        tm.assert_frame_equal(result, frame)
 
        frame["txt"] = ["a"] * len(frame)
        frame2 = frame.copy()
        new_idx = Index(np.arange(len(frame2)), dtype=np.int64) + 10
        frame2["Idx"] = new_idx.copy()
        assert (
            sql.to_sql(frame2, name="test_table2", con=sqlite_buildin, index=False)
            == 30
        )
        result = sql.read_sql(
            "select * from test_table2", sqlite_buildin, index_col="Idx"
        )
        expected = frame.copy()
        expected.index = new_idx
        expected.index.name = "Idx"
        tm.assert_frame_equal(expected, result)
 
    def test_write_row_by_row(self, sqlite_buildin):
        frame = tm.makeTimeDataFrame()
        frame.iloc[0, 0] = np.nan
        create_sql = sql.get_schema(frame, "test")
        cur = sqlite_buildin.cursor()
        cur.execute(create_sql)
 
        ins = "INSERT INTO test VALUES (%s, %s, %s, %s)"
        for _, row in frame.iterrows():
            fmt_sql = format_query(ins, *row)
            tquery(fmt_sql, con=sqlite_buildin)
 
        sqlite_buildin.commit()
 
        result = sql.read_sql("select * from test", con=sqlite_buildin)
        result.index = frame.index
        tm.assert_frame_equal(result, frame, rtol=1e-3)
 
    def test_execute(self, sqlite_buildin):
        frame = tm.makeTimeDataFrame()
        create_sql = sql.get_schema(frame, "test")
        cur = sqlite_buildin.cursor()
        cur.execute(create_sql)
        ins = "INSERT INTO test VALUES (?, ?, ?, ?)"
 
        row = frame.iloc[0]
        with sql.pandasSQL_builder(sqlite_buildin) as pandas_sql:
            pandas_sql.execute(ins, tuple(row))
        sqlite_buildin.commit()
 
        result = sql.read_sql("select * from test", sqlite_buildin)
        result.index = frame.index[:1]
        tm.assert_frame_equal(result, frame[:1])
 
    def test_schema(self, sqlite_buildin):
        frame = tm.makeTimeDataFrame()
        create_sql = sql.get_schema(frame, "test")
        lines = create_sql.splitlines()
        for line in lines:
            tokens = line.split(" ")
            if len(tokens) == 2 and tokens[0] == "A":
                assert tokens[1] == "DATETIME"
 
        create_sql = sql.get_schema(frame, "test", keys=["A", "B"])
        lines = create_sql.splitlines()
        assert 'PRIMARY KEY ("A", "B")' in create_sql
        cur = sqlite_buildin.cursor()
        cur.execute(create_sql)
 
    def test_execute_fail(self, sqlite_buildin):
        create_sql = """
        CREATE TABLE test
        (
        a TEXT,
        b TEXT,
        c REAL,
        PRIMARY KEY (a, b)
        );
        """
        cur = sqlite_buildin.cursor()
        cur.execute(create_sql)
 
        with sql.pandasSQL_builder(sqlite_buildin) as pandas_sql:
            pandas_sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)')
            pandas_sql.execute('INSERT INTO test VALUES("foo", "baz", 2.567)')
 
            with pytest.raises(sql.DatabaseError, match="Execution failed on sql"):
                pandas_sql.execute('INSERT INTO test VALUES("foo", "bar", 7)')
 
    def test_execute_closed_connection(self):
        create_sql = """
        CREATE TABLE test
        (
        a TEXT,
        b TEXT,
        c REAL,
        PRIMARY KEY (a, b)
        );
        """
        with contextlib.closing(sqlite3.connect(":memory:")) as conn:
            cur = conn.cursor()
            cur.execute(create_sql)
 
            with sql.pandasSQL_builder(conn) as pandas_sql:
                pandas_sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)')
 
        msg = "Cannot operate on a closed database."
        with pytest.raises(sqlite3.ProgrammingError, match=msg):
            tquery("select * from test", con=conn)
 
    def test_keyword_as_column_names(self, sqlite_buildin):
        df = DataFrame({"From": np.ones(5)})
        assert sql.to_sql(df, con=sqlite_buildin, name="testkeywords", index=False) == 5
 
    def test_onecolumn_of_integer(self, sqlite_buildin):
        # GH 3628
        # a column_of_integers dataframe should transfer well to sql
 
        mono_df = DataFrame([1, 2], columns=["c0"])
        assert sql.to_sql(mono_df, con=sqlite_buildin, name="mono_df", index=False) == 2
        # computing the sum via sql
        con_x = sqlite_buildin
        the_sum = sum(my_c0[0] for my_c0 in con_x.execute("select * from mono_df"))
        # it should not fail, and gives 3 ( Issue #3628 )
        assert the_sum == 3
 
        result = sql.read_sql("select * from mono_df", con_x)
        tm.assert_frame_equal(result, mono_df)
 
    def test_if_exists(self, sqlite_buildin):
        df_if_exists_1 = DataFrame({"col1": [1, 2], "col2": ["A", "B"]})
        df_if_exists_2 = DataFrame({"col1": [3, 4, 5], "col2": ["C", "D", "E"]})
        table_name = "table_if_exists"
        sql_select = f"SELECT * FROM {table_name}"
 
        msg = "'notvalidvalue' is not valid for if_exists"
        with pytest.raises(ValueError, match=msg):
            sql.to_sql(
                frame=df_if_exists_1,
                con=sqlite_buildin,
                name=table_name,
                if_exists="notvalidvalue",
            )
        self.drop_table(table_name, sqlite_buildin)
 
        # test if_exists='fail'
        sql.to_sql(
            frame=df_if_exists_1, con=sqlite_buildin, name=table_name, if_exists="fail"
        )
        msg = "Table 'table_if_exists' already exists"
        with pytest.raises(ValueError, match=msg):
            sql.to_sql(
                frame=df_if_exists_1,
                con=sqlite_buildin,
                name=table_name,
                if_exists="fail",
            )
        # test if_exists='replace'
        sql.to_sql(
            frame=df_if_exists_1,
            con=sqlite_buildin,
            name=table_name,
            if_exists="replace",
            index=False,
        )
        assert tquery(sql_select, con=sqlite_buildin) == [(1, "A"), (2, "B")]
        assert (
            sql.to_sql(
                frame=df_if_exists_2,
                con=sqlite_buildin,
                name=table_name,
                if_exists="replace",
                index=False,
            )
            == 3
        )
        assert tquery(sql_select, con=sqlite_buildin) == [(3, "C"), (4, "D"), (5, "E")]
        self.drop_table(table_name, sqlite_buildin)
 
        # test if_exists='append'
        assert (
            sql.to_sql(
                frame=df_if_exists_1,
                con=sqlite_buildin,
                name=table_name,
                if_exists="fail",
                index=False,
            )
            == 2
        )
        assert tquery(sql_select, con=sqlite_buildin) == [(1, "A"), (2, "B")]
        assert (
            sql.to_sql(
                frame=df_if_exists_2,
                con=sqlite_buildin,
                name=table_name,
                if_exists="append",
                index=False,
            )
            == 3
        )
        assert tquery(sql_select, con=sqlite_buildin) == [
            (1, "A"),
            (2, "B"),
            (3, "C"),
            (4, "D"),
            (5, "E"),
        ]
        self.drop_table(table_name, sqlite_buildin)