zmc
2023-12-22 9fdbf60165db0400c2e8e6be2dc6e88138ac719a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
""" test feather-format compat """
import numpy as np
import pytest
 
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays import (
    ArrowStringArray,
    StringArray,
)
 
from pandas.io.feather_format import read_feather, to_feather  # isort:skip
 
pyarrow = pytest.importorskip("pyarrow", minversion="1.0.1")
 
 
@pytest.mark.single_cpu
class TestFeather:
    def check_error_on_write(self, df, exc, err_msg):
        # check that we are raising the exception
        # on writing
 
        with pytest.raises(exc, match=err_msg):
            with tm.ensure_clean() as path:
                to_feather(df, path)
 
    def check_external_error_on_write(self, df):
        # check that we are raising the exception
        # on writing
 
        with tm.external_error_raised(Exception):
            with tm.ensure_clean() as path:
                to_feather(df, path)
 
    def check_round_trip(self, df, expected=None, write_kwargs={}, **read_kwargs):
        if expected is None:
            expected = df
 
        with tm.ensure_clean() as path:
            to_feather(df, path, **write_kwargs)
 
            result = read_feather(path, **read_kwargs)
            tm.assert_frame_equal(result, expected)
 
    def test_error(self):
        msg = "feather only support IO with DataFrames"
        for obj in [
            pd.Series([1, 2, 3]),
            1,
            "foo",
            pd.Timestamp("20130101"),
            np.array([1, 2, 3]),
        ]:
            self.check_error_on_write(obj, ValueError, msg)
 
    def test_basic(self):
        df = pd.DataFrame(
            {
                "string": list("abc"),
                "int": list(range(1, 4)),
                "uint": np.arange(3, 6).astype("u1"),
                "float": np.arange(4.0, 7.0, dtype="float64"),
                "float_with_null": [1.0, np.nan, 3],
                "bool": [True, False, True],
                "bool_with_null": [True, np.nan, False],
                "cat": pd.Categorical(list("abc")),
                "dt": pd.DatetimeIndex(
                    list(pd.date_range("20130101", periods=3)), freq=None
                ),
                "dttz": pd.DatetimeIndex(
                    list(pd.date_range("20130101", periods=3, tz="US/Eastern")),
                    freq=None,
                ),
                "dt_with_null": [
                    pd.Timestamp("20130101"),
                    pd.NaT,
                    pd.Timestamp("20130103"),
                ],
                "dtns": pd.DatetimeIndex(
                    list(pd.date_range("20130101", periods=3, freq="ns")), freq=None
                ),
            }
        )
        df["periods"] = pd.period_range("2013", freq="M", periods=3)
        df["timedeltas"] = pd.timedelta_range("1 day", periods=3)
        df["intervals"] = pd.interval_range(0, 3, 3)
 
        assert df.dttz.dtype.tz.zone == "US/Eastern"
        self.check_round_trip(df)
 
    def test_duplicate_columns(self):
        # https://github.com/wesm/feather/issues/53
        # not currently able to handle duplicate columns
        df = pd.DataFrame(np.arange(12).reshape(4, 3), columns=list("aaa")).copy()
        self.check_external_error_on_write(df)
 
    def test_stringify_columns(self):
        df = pd.DataFrame(np.arange(12).reshape(4, 3)).copy()
        msg = "feather must have string column names"
        self.check_error_on_write(df, ValueError, msg)
 
    def test_read_columns(self):
        # GH 24025
        df = pd.DataFrame(
            {
                "col1": list("abc"),
                "col2": list(range(1, 4)),
                "col3": list("xyz"),
                "col4": list(range(4, 7)),
            }
        )
        columns = ["col1", "col3"]
        self.check_round_trip(df, expected=df[columns], columns=columns)
 
    def test_read_columns_different_order(self):
        # GH 33878
        df = pd.DataFrame({"A": [1, 2], "B": ["x", "y"], "C": [True, False]})
        expected = df[["B", "A"]]
        self.check_round_trip(df, expected, columns=["B", "A"])
 
    def test_unsupported_other(self):
        # mixed python objects
        df = pd.DataFrame({"a": ["a", 1, 2.0]})
        self.check_external_error_on_write(df)
 
    def test_rw_use_threads(self):
        df = pd.DataFrame({"A": np.arange(100000)})
        self.check_round_trip(df, use_threads=True)
        self.check_round_trip(df, use_threads=False)
 
    def test_write_with_index(self):
        df = pd.DataFrame({"A": [1, 2, 3]})
        self.check_round_trip(df)
 
        msg = (
            r"feather does not support serializing .* for the index; "
            r"you can \.reset_index\(\) to make the index into column\(s\)"
        )
        # non-default index
        for index in [
            [2, 3, 4],
            pd.date_range("20130101", periods=3),
            list("abc"),
            [1, 3, 4],
            pd.MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1)]),
        ]:
            df.index = index
            self.check_error_on_write(df, ValueError, msg)
 
        # index with meta-data
        df.index = [0, 1, 2]
        df.index.name = "foo"
        msg = "feather does not serialize index meta-data on a default index"
        self.check_error_on_write(df, ValueError, msg)
 
        # column multi-index
        df.index = [0, 1, 2]
        df.columns = pd.MultiIndex.from_tuples([("a", 1)])
        msg = "feather must have string column names"
        self.check_error_on_write(df, ValueError, msg)
 
    def test_path_pathlib(self):
        df = tm.makeDataFrame().reset_index()
        result = tm.round_trip_pathlib(df.to_feather, read_feather)
        tm.assert_frame_equal(df, result)
 
    def test_path_localpath(self):
        df = tm.makeDataFrame().reset_index()
        result = tm.round_trip_localpath(df.to_feather, read_feather)
        tm.assert_frame_equal(df, result)
 
    def test_passthrough_keywords(self):
        df = tm.makeDataFrame().reset_index()
        self.check_round_trip(df, write_kwargs={"version": 1})
 
    @pytest.mark.network
    @tm.network(
        url=(
            "https://raw.githubusercontent.com/pandas-dev/pandas/main/"
            "pandas/tests/io/data/feather/feather-0_3_1.feather"
        ),
        check_before_test=True,
    )
    def test_http_path(self, feather_file):
        # GH 29055
        url = (
            "https://raw.githubusercontent.com/pandas-dev/pandas/main/"
            "pandas/tests/io/data/feather/feather-0_3_1.feather"
        )
        expected = read_feather(feather_file)
        res = read_feather(url)
        tm.assert_frame_equal(expected, res)
 
    def test_read_feather_dtype_backend(self, string_storage, dtype_backend):
        # GH#50765
        pa = pytest.importorskip("pyarrow")
        df = pd.DataFrame(
            {
                "a": pd.Series([1, np.nan, 3], dtype="Int64"),
                "b": pd.Series([1, 2, 3], dtype="Int64"),
                "c": pd.Series([1.5, np.nan, 2.5], dtype="Float64"),
                "d": pd.Series([1.5, 2.0, 2.5], dtype="Float64"),
                "e": [True, False, None],
                "f": [True, False, True],
                "g": ["a", "b", "c"],
                "h": ["a", "b", None],
            }
        )
 
        if string_storage == "python":
            string_array = StringArray(np.array(["a", "b", "c"], dtype=np.object_))
            string_array_na = StringArray(np.array(["a", "b", pd.NA], dtype=np.object_))
 
        else:
            string_array = ArrowStringArray(pa.array(["a", "b", "c"]))
            string_array_na = ArrowStringArray(pa.array(["a", "b", None]))
 
        with tm.ensure_clean() as path:
            to_feather(df, path)
            with pd.option_context("mode.string_storage", string_storage):
                result = read_feather(path, dtype_backend=dtype_backend)
 
        expected = pd.DataFrame(
            {
                "a": pd.Series([1, np.nan, 3], dtype="Int64"),
                "b": pd.Series([1, 2, 3], dtype="Int64"),
                "c": pd.Series([1.5, np.nan, 2.5], dtype="Float64"),
                "d": pd.Series([1.5, 2.0, 2.5], dtype="Float64"),
                "e": pd.Series([True, False, pd.NA], dtype="boolean"),
                "f": pd.Series([True, False, True], dtype="boolean"),
                "g": string_array,
                "h": string_array_na,
            }
        )
 
        if dtype_backend == "pyarrow":
            from pandas.arrays import ArrowExtensionArray
 
            expected = pd.DataFrame(
                {
                    col: ArrowExtensionArray(pa.array(expected[col], from_pandas=True))
                    for col in expected.columns
                }
            )
 
        tm.assert_frame_equal(result, expected)
 
    def test_invalid_dtype_backend(self):
        msg = (
            "dtype_backend numpy is invalid, only 'numpy_nullable' and "
            "'pyarrow' are allowed."
        )
        df = pd.DataFrame({"int": list(range(1, 4))})
        with tm.ensure_clean("tmp.feather") as path:
            df.to_feather(path)
            with pytest.raises(ValueError, match=msg):
                read_feather(path, dtype_backend="numpy")