zmc
2023-12-22 9fdbf60165db0400c2e8e6be2dc6e88138ac719a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import numpy as np
import pytest
 
import pandas as pd
from pandas import (
    DataFrame,
    IntervalIndex,
    Series,
)
import pandas._testing as tm
 
 
class TestIntervalIndex:
    @pytest.fixture
    def series_with_interval_index(self):
        return Series(np.arange(5), IntervalIndex.from_breaks(np.arange(6)))
 
    def test_getitem_with_scalar(self, series_with_interval_index, indexer_sl):
        ser = series_with_interval_index.copy()
 
        expected = ser.iloc[:3]
        tm.assert_series_equal(expected, indexer_sl(ser)[:3])
        tm.assert_series_equal(expected, indexer_sl(ser)[:2.5])
        tm.assert_series_equal(expected, indexer_sl(ser)[0.1:2.5])
        if indexer_sl is tm.loc:
            tm.assert_series_equal(expected, ser.loc[-1:3])
 
        expected = ser.iloc[1:4]
        tm.assert_series_equal(expected, indexer_sl(ser)[[1.5, 2.5, 3.5]])
        tm.assert_series_equal(expected, indexer_sl(ser)[[2, 3, 4]])
        tm.assert_series_equal(expected, indexer_sl(ser)[[1.5, 3, 4]])
 
        expected = ser.iloc[2:5]
        tm.assert_series_equal(expected, indexer_sl(ser)[ser >= 2])
 
    @pytest.mark.parametrize("direction", ["increasing", "decreasing"])
    def test_getitem_nonoverlapping_monotonic(self, direction, closed, indexer_sl):
        tpls = [(0, 1), (2, 3), (4, 5)]
        if direction == "decreasing":
            tpls = tpls[::-1]
 
        idx = IntervalIndex.from_tuples(tpls, closed=closed)
        ser = Series(list("abc"), idx)
 
        for key, expected in zip(idx.left, ser):
            if idx.closed_left:
                assert indexer_sl(ser)[key] == expected
            else:
                with pytest.raises(KeyError, match=str(key)):
                    indexer_sl(ser)[key]
 
        for key, expected in zip(idx.right, ser):
            if idx.closed_right:
                assert indexer_sl(ser)[key] == expected
            else:
                with pytest.raises(KeyError, match=str(key)):
                    indexer_sl(ser)[key]
 
        for key, expected in zip(idx.mid, ser):
            assert indexer_sl(ser)[key] == expected
 
    def test_getitem_non_matching(self, series_with_interval_index, indexer_sl):
        ser = series_with_interval_index.copy()
 
        # this is a departure from our current
        # indexing scheme, but simpler
        with pytest.raises(KeyError, match=r"\[-1\] not in index"):
            indexer_sl(ser)[[-1, 3, 4, 5]]
 
        with pytest.raises(KeyError, match=r"\[-1\] not in index"):
            indexer_sl(ser)[[-1, 3]]
 
    @pytest.mark.slow
    def test_loc_getitem_large_series(self):
        ser = Series(
            np.arange(1000000), index=IntervalIndex.from_breaks(np.arange(1000001))
        )
 
        result1 = ser.loc[:80000]
        result2 = ser.loc[0:80000]
        result3 = ser.loc[0:80000:1]
        tm.assert_series_equal(result1, result2)
        tm.assert_series_equal(result1, result3)
 
    def test_loc_getitem_frame(self):
        # CategoricalIndex with IntervalIndex categories
        df = DataFrame({"A": range(10)})
        ser = pd.cut(df.A, 5)
        df["B"] = ser
        df = df.set_index("B")
 
        result = df.loc[4]
        expected = df.iloc[4:6]
        tm.assert_frame_equal(result, expected)
 
        with pytest.raises(KeyError, match="10"):
            df.loc[10]
 
        # single list-like
        result = df.loc[[4]]
        expected = df.iloc[4:6]
        tm.assert_frame_equal(result, expected)
 
        # non-unique
        result = df.loc[[4, 5]]
        expected = df.take([4, 5, 4, 5])
        tm.assert_frame_equal(result, expected)
 
        with pytest.raises(KeyError, match=r"None of \[\[10\]\] are"):
            df.loc[[10]]
 
        # partial missing
        with pytest.raises(KeyError, match=r"\[10\] not in index"):
            df.loc[[10, 4]]
 
    def test_getitem_interval_with_nans(self, frame_or_series, indexer_sl):
        # GH#41831
 
        index = IntervalIndex([np.nan, np.nan])
        key = index[:-1]
 
        obj = frame_or_series(range(2), index=index)
        if frame_or_series is DataFrame and indexer_sl is tm.setitem:
            obj = obj.T
 
        result = indexer_sl(obj)[key]
        expected = obj
 
        tm.assert_equal(result, expected)
 
 
class TestIntervalIndexInsideMultiIndex:
    def test_mi_intervalindex_slicing_with_scalar(self):
        # GH#27456
        ii = IntervalIndex.from_arrays(
            [0, 1, 10, 11, 0, 1, 10, 11], [1, 2, 11, 12, 1, 2, 11, 12], name="MP"
        )
        idx = pd.MultiIndex.from_arrays(
            [
                pd.Index(["FC", "FC", "FC", "FC", "OWNER", "OWNER", "OWNER", "OWNER"]),
                pd.Index(
                    ["RID1", "RID1", "RID2", "RID2", "RID1", "RID1", "RID2", "RID2"]
                ),
                ii,
            ]
        )
 
        idx.names = ["Item", "RID", "MP"]
        df = DataFrame({"value": [1, 2, 3, 4, 5, 6, 7, 8]})
        df.index = idx
 
        query_df = DataFrame(
            {
                "Item": ["FC", "OWNER", "FC", "OWNER", "OWNER"],
                "RID": ["RID1", "RID1", "RID1", "RID2", "RID2"],
                "MP": [0.2, 1.5, 1.6, 11.1, 10.9],
            }
        )
 
        query_df = query_df.sort_index()
 
        idx = pd.MultiIndex.from_arrays([query_df.Item, query_df.RID, query_df.MP])
        query_df.index = idx
        result = df.value.loc[query_df.index]
 
        # the IntervalIndex level is indexed with floats, which map to
        #  the intervals containing them.  Matching the behavior we would get
        #  with _only_ an IntervalIndex, we get an IntervalIndex level back.
        sliced_level = ii.take([0, 1, 1, 3, 2])
        expected_index = pd.MultiIndex.from_arrays(
            [idx.get_level_values(0), idx.get_level_values(1), sliced_level]
        )
        expected = Series([1, 6, 2, 8, 7], index=expected_index, name="value")
        tm.assert_series_equal(result, expected)