zmc
2023-12-22 9fdbf60165db0400c2e8e6be2dc6e88138ac719a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
from itertools import permutations
import re
 
import numpy as np
import pytest
 
import pandas as pd
from pandas import (
    Index,
    Interval,
    IntervalIndex,
    Timedelta,
    Timestamp,
    date_range,
    interval_range,
    isna,
    notna,
    timedelta_range,
)
import pandas._testing as tm
import pandas.core.common as com
 
 
@pytest.fixture(params=[None, "foo"])
def name(request):
    return request.param
 
 
class TestIntervalIndex:
    index = IntervalIndex.from_arrays([0, 1], [1, 2])
 
    def create_index(self, closed="right"):
        return IntervalIndex.from_breaks(range(11), closed=closed)
 
    def create_index_with_nan(self, closed="right"):
        mask = [True, False] + [True] * 8
        return IntervalIndex.from_arrays(
            np.where(mask, np.arange(10), np.nan),
            np.where(mask, np.arange(1, 11), np.nan),
            closed=closed,
        )
 
    def test_properties(self, closed):
        index = self.create_index(closed=closed)
        assert len(index) == 10
        assert index.size == 10
        assert index.shape == (10,)
 
        tm.assert_index_equal(index.left, Index(np.arange(10, dtype=np.int64)))
        tm.assert_index_equal(index.right, Index(np.arange(1, 11, dtype=np.int64)))
        tm.assert_index_equal(index.mid, Index(np.arange(0.5, 10.5, dtype=np.float64)))
 
        assert index.closed == closed
 
        ivs = [
            Interval(left, right, closed)
            for left, right in zip(range(10), range(1, 11))
        ]
        expected = np.array(ivs, dtype=object)
        tm.assert_numpy_array_equal(np.asarray(index), expected)
 
        # with nans
        index = self.create_index_with_nan(closed=closed)
        assert len(index) == 10
        assert index.size == 10
        assert index.shape == (10,)
 
        expected_left = Index([0, np.nan, 2, 3, 4, 5, 6, 7, 8, 9])
        expected_right = expected_left + 1
        expected_mid = expected_left + 0.5
        tm.assert_index_equal(index.left, expected_left)
        tm.assert_index_equal(index.right, expected_right)
        tm.assert_index_equal(index.mid, expected_mid)
 
        assert index.closed == closed
 
        ivs = [
            Interval(left, right, closed) if notna(left) else np.nan
            for left, right in zip(expected_left, expected_right)
        ]
        expected = np.array(ivs, dtype=object)
        tm.assert_numpy_array_equal(np.asarray(index), expected)
 
    @pytest.mark.parametrize(
        "breaks",
        [
            [1, 1, 2, 5, 15, 53, 217, 1014, 5335, 31240, 201608],
            [-np.inf, -100, -10, 0.5, 1, 1.5, 3.8, 101, 202, np.inf],
            pd.to_datetime(["20170101", "20170202", "20170303", "20170404"]),
            pd.to_timedelta(["1ns", "2ms", "3s", "4min", "5H", "6D"]),
        ],
    )
    def test_length(self, closed, breaks):
        # GH 18789
        index = IntervalIndex.from_breaks(breaks, closed=closed)
        result = index.length
        expected = Index(iv.length for iv in index)
        tm.assert_index_equal(result, expected)
 
        # with NA
        index = index.insert(1, np.nan)
        result = index.length
        expected = Index(iv.length if notna(iv) else iv for iv in index)
        tm.assert_index_equal(result, expected)
 
    def test_with_nans(self, closed):
        index = self.create_index(closed=closed)
        assert index.hasnans is False
 
        result = index.isna()
        expected = np.zeros(len(index), dtype=bool)
        tm.assert_numpy_array_equal(result, expected)
 
        result = index.notna()
        expected = np.ones(len(index), dtype=bool)
        tm.assert_numpy_array_equal(result, expected)
 
        index = self.create_index_with_nan(closed=closed)
        assert index.hasnans is True
 
        result = index.isna()
        expected = np.array([False, True] + [False] * (len(index) - 2))
        tm.assert_numpy_array_equal(result, expected)
 
        result = index.notna()
        expected = np.array([True, False] + [True] * (len(index) - 2))
        tm.assert_numpy_array_equal(result, expected)
 
    def test_copy(self, closed):
        expected = self.create_index(closed=closed)
 
        result = expected.copy()
        assert result.equals(expected)
 
        result = expected.copy(deep=True)
        assert result.equals(expected)
        assert result.left is not expected.left
 
    def test_ensure_copied_data(self, closed):
        # exercise the copy flag in the constructor
 
        # not copying
        index = self.create_index(closed=closed)
        result = IntervalIndex(index, copy=False)
        tm.assert_numpy_array_equal(
            index.left.values, result.left.values, check_same="same"
        )
        tm.assert_numpy_array_equal(
            index.right.values, result.right.values, check_same="same"
        )
 
        # by-definition make a copy
        result = IntervalIndex(np.array(index), copy=False)
        tm.assert_numpy_array_equal(
            index.left.values, result.left.values, check_same="copy"
        )
        tm.assert_numpy_array_equal(
            index.right.values, result.right.values, check_same="copy"
        )
 
    def test_delete(self, closed):
        breaks = np.arange(1, 11, dtype=np.int64)
        expected = IntervalIndex.from_breaks(breaks, closed=closed)
        result = self.create_index(closed=closed).delete(0)
        tm.assert_index_equal(result, expected)
 
    @pytest.mark.parametrize(
        "data",
        [
            interval_range(0, periods=10, closed="neither"),
            interval_range(1.7, periods=8, freq=2.5, closed="both"),
            interval_range(Timestamp("20170101"), periods=12, closed="left"),
            interval_range(Timedelta("1 day"), periods=6, closed="right"),
        ],
    )
    def test_insert(self, data):
        item = data[0]
        idx_item = IntervalIndex([item])
 
        # start
        expected = idx_item.append(data)
        result = data.insert(0, item)
        tm.assert_index_equal(result, expected)
 
        # end
        expected = data.append(idx_item)
        result = data.insert(len(data), item)
        tm.assert_index_equal(result, expected)
 
        # mid
        expected = data[:3].append(idx_item).append(data[3:])
        result = data.insert(3, item)
        tm.assert_index_equal(result, expected)
 
        # invalid type
        res = data.insert(1, "foo")
        expected = data.astype(object).insert(1, "foo")
        tm.assert_index_equal(res, expected)
 
        msg = "can only insert Interval objects and NA into an IntervalArray"
        with pytest.raises(TypeError, match=msg):
            data._data.insert(1, "foo")
 
        # invalid closed
        msg = "'value.closed' is 'left', expected 'right'."
        for closed in {"left", "right", "both", "neither"} - {item.closed}:
            msg = f"'value.closed' is '{closed}', expected '{item.closed}'."
            bad_item = Interval(item.left, item.right, closed=closed)
            res = data.insert(1, bad_item)
            expected = data.astype(object).insert(1, bad_item)
            tm.assert_index_equal(res, expected)
            with pytest.raises(ValueError, match=msg):
                data._data.insert(1, bad_item)
 
        # GH 18295 (test missing)
        na_idx = IntervalIndex([np.nan], closed=data.closed)
        for na in [np.nan, None, pd.NA]:
            expected = data[:1].append(na_idx).append(data[1:])
            result = data.insert(1, na)
            tm.assert_index_equal(result, expected)
 
        if data.left.dtype.kind not in ["m", "M"]:
            # trying to insert pd.NaT into a numeric-dtyped Index should cast
            expected = data.astype(object).insert(1, pd.NaT)
 
            msg = "can only insert Interval objects and NA into an IntervalArray"
            with pytest.raises(TypeError, match=msg):
                data._data.insert(1, pd.NaT)
 
        result = data.insert(1, pd.NaT)
        tm.assert_index_equal(result, expected)
 
    def test_is_unique_interval(self, closed):
        """
        Interval specific tests for is_unique in addition to base class tests
        """
        # unique overlapping - distinct endpoints
        idx = IntervalIndex.from_tuples([(0, 1), (0.5, 1.5)], closed=closed)
        assert idx.is_unique is True
 
        # unique overlapping - shared endpoints
        idx = IntervalIndex.from_tuples([(1, 2), (1, 3), (2, 3)], closed=closed)
        assert idx.is_unique is True
 
        # unique nested
        idx = IntervalIndex.from_tuples([(-1, 1), (-2, 2)], closed=closed)
        assert idx.is_unique is True
 
        # unique NaN
        idx = IntervalIndex.from_tuples([(np.NaN, np.NaN)], closed=closed)
        assert idx.is_unique is True
 
        # non-unique NaN
        idx = IntervalIndex.from_tuples(
            [(np.NaN, np.NaN), (np.NaN, np.NaN)], closed=closed
        )
        assert idx.is_unique is False
 
    def test_monotonic(self, closed):
        # increasing non-overlapping
        idx = IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)], closed=closed)
        assert idx.is_monotonic_increasing is True
        assert idx._is_strictly_monotonic_increasing is True
        assert idx.is_monotonic_decreasing is False
        assert idx._is_strictly_monotonic_decreasing is False
 
        # decreasing non-overlapping
        idx = IntervalIndex.from_tuples([(4, 5), (2, 3), (1, 2)], closed=closed)
        assert idx.is_monotonic_increasing is False
        assert idx._is_strictly_monotonic_increasing is False
        assert idx.is_monotonic_decreasing is True
        assert idx._is_strictly_monotonic_decreasing is True
 
        # unordered non-overlapping
        idx = IntervalIndex.from_tuples([(0, 1), (4, 5), (2, 3)], closed=closed)
        assert idx.is_monotonic_increasing is False
        assert idx._is_strictly_monotonic_increasing is False
        assert idx.is_monotonic_decreasing is False
        assert idx._is_strictly_monotonic_decreasing is False
 
        # increasing overlapping
        idx = IntervalIndex.from_tuples([(0, 2), (0.5, 2.5), (1, 3)], closed=closed)
        assert idx.is_monotonic_increasing is True
        assert idx._is_strictly_monotonic_increasing is True
        assert idx.is_monotonic_decreasing is False
        assert idx._is_strictly_monotonic_decreasing is False
 
        # decreasing overlapping
        idx = IntervalIndex.from_tuples([(1, 3), (0.5, 2.5), (0, 2)], closed=closed)
        assert idx.is_monotonic_increasing is False
        assert idx._is_strictly_monotonic_increasing is False
        assert idx.is_monotonic_decreasing is True
        assert idx._is_strictly_monotonic_decreasing is True
 
        # unordered overlapping
        idx = IntervalIndex.from_tuples([(0.5, 2.5), (0, 2), (1, 3)], closed=closed)
        assert idx.is_monotonic_increasing is False
        assert idx._is_strictly_monotonic_increasing is False
        assert idx.is_monotonic_decreasing is False
        assert idx._is_strictly_monotonic_decreasing is False
 
        # increasing overlapping shared endpoints
        idx = IntervalIndex.from_tuples([(1, 2), (1, 3), (2, 3)], closed=closed)
        assert idx.is_monotonic_increasing is True
        assert idx._is_strictly_monotonic_increasing is True
        assert idx.is_monotonic_decreasing is False
        assert idx._is_strictly_monotonic_decreasing is False
 
        # decreasing overlapping shared endpoints
        idx = IntervalIndex.from_tuples([(2, 3), (1, 3), (1, 2)], closed=closed)
        assert idx.is_monotonic_increasing is False
        assert idx._is_strictly_monotonic_increasing is False
        assert idx.is_monotonic_decreasing is True
        assert idx._is_strictly_monotonic_decreasing is True
 
        # stationary
        idx = IntervalIndex.from_tuples([(0, 1), (0, 1)], closed=closed)
        assert idx.is_monotonic_increasing is True
        assert idx._is_strictly_monotonic_increasing is False
        assert idx.is_monotonic_decreasing is True
        assert idx._is_strictly_monotonic_decreasing is False
 
        # empty
        idx = IntervalIndex([], closed=closed)
        assert idx.is_monotonic_increasing is True
        assert idx._is_strictly_monotonic_increasing is True
        assert idx.is_monotonic_decreasing is True
        assert idx._is_strictly_monotonic_decreasing is True
 
    def test_is_monotonic_with_nans(self):
        # GH#41831
        index = IntervalIndex([np.nan, np.nan])
 
        assert not index.is_monotonic_increasing
        assert not index._is_strictly_monotonic_increasing
        assert not index.is_monotonic_increasing
        assert not index._is_strictly_monotonic_decreasing
        assert not index.is_monotonic_decreasing
 
    def test_get_item(self, closed):
        i = IntervalIndex.from_arrays((0, 1, np.nan), (1, 2, np.nan), closed=closed)
        assert i[0] == Interval(0.0, 1.0, closed=closed)
        assert i[1] == Interval(1.0, 2.0, closed=closed)
        assert isna(i[2])
 
        result = i[0:1]
        expected = IntervalIndex.from_arrays((0.0,), (1.0,), closed=closed)
        tm.assert_index_equal(result, expected)
 
        result = i[0:2]
        expected = IntervalIndex.from_arrays((0.0, 1), (1.0, 2.0), closed=closed)
        tm.assert_index_equal(result, expected)
 
        result = i[1:3]
        expected = IntervalIndex.from_arrays(
            (1.0, np.nan), (2.0, np.nan), closed=closed
        )
        tm.assert_index_equal(result, expected)
 
    @pytest.mark.parametrize(
        "breaks",
        [
            date_range("20180101", periods=4),
            date_range("20180101", periods=4, tz="US/Eastern"),
            timedelta_range("0 days", periods=4),
        ],
        ids=lambda x: str(x.dtype),
    )
    def test_maybe_convert_i8(self, breaks):
        # GH 20636
        index = IntervalIndex.from_breaks(breaks)
 
        # intervalindex
        result = index._maybe_convert_i8(index)
        expected = IntervalIndex.from_breaks(breaks.asi8)
        tm.assert_index_equal(result, expected)
 
        # interval
        interval = Interval(breaks[0], breaks[1])
        result = index._maybe_convert_i8(interval)
        expected = Interval(breaks[0]._value, breaks[1]._value)
        assert result == expected
 
        # datetimelike index
        result = index._maybe_convert_i8(breaks)
        expected = Index(breaks.asi8)
        tm.assert_index_equal(result, expected)
 
        # datetimelike scalar
        result = index._maybe_convert_i8(breaks[0])
        expected = breaks[0]._value
        assert result == expected
 
        # list-like of datetimelike scalars
        result = index._maybe_convert_i8(list(breaks))
        expected = Index(breaks.asi8)
        tm.assert_index_equal(result, expected)
 
    @pytest.mark.parametrize(
        "breaks",
        [date_range("2018-01-01", periods=5), timedelta_range("0 days", periods=5)],
    )
    def test_maybe_convert_i8_nat(self, breaks):
        # GH 20636
        index = IntervalIndex.from_breaks(breaks)
 
        to_convert = breaks._constructor([pd.NaT] * 3)
        expected = Index([np.nan] * 3, dtype=np.float64)
        result = index._maybe_convert_i8(to_convert)
        tm.assert_index_equal(result, expected)
 
        to_convert = to_convert.insert(0, breaks[0])
        expected = expected.insert(0, float(breaks[0]._value))
        result = index._maybe_convert_i8(to_convert)
        tm.assert_index_equal(result, expected)
 
    @pytest.mark.parametrize(
        "make_key",
        [lambda breaks: breaks, list],
        ids=["lambda", "list"],
    )
    def test_maybe_convert_i8_numeric(self, make_key, any_real_numpy_dtype):
        # GH 20636
        breaks = np.arange(5, dtype=any_real_numpy_dtype)
        index = IntervalIndex.from_breaks(breaks)
        key = make_key(breaks)
 
        result = index._maybe_convert_i8(key)
        kind = breaks.dtype.kind
        expected_dtype = {"i": np.int64, "u": np.uint64, "f": np.float64}[kind]
        expected = Index(key, dtype=expected_dtype)
        tm.assert_index_equal(result, expected)
 
    @pytest.mark.parametrize(
        "make_key",
        [
            IntervalIndex.from_breaks,
            lambda breaks: Interval(breaks[0], breaks[1]),
            lambda breaks: breaks[0],
        ],
        ids=["IntervalIndex", "Interval", "scalar"],
    )
    def test_maybe_convert_i8_numeric_identical(self, make_key, any_real_numpy_dtype):
        # GH 20636
        breaks = np.arange(5, dtype=any_real_numpy_dtype)
        index = IntervalIndex.from_breaks(breaks)
        key = make_key(breaks)
 
        # test if _maybe_convert_i8 won't change key if an Interval or IntervalIndex
        result = index._maybe_convert_i8(key)
        assert result is key
 
    @pytest.mark.parametrize(
        "breaks1, breaks2",
        permutations(
            [
                date_range("20180101", periods=4),
                date_range("20180101", periods=4, tz="US/Eastern"),
                timedelta_range("0 days", periods=4),
            ],
            2,
        ),
        ids=lambda x: str(x.dtype),
    )
    @pytest.mark.parametrize(
        "make_key",
        [
            IntervalIndex.from_breaks,
            lambda breaks: Interval(breaks[0], breaks[1]),
            lambda breaks: breaks,
            lambda breaks: breaks[0],
            list,
        ],
        ids=["IntervalIndex", "Interval", "Index", "scalar", "list"],
    )
    def test_maybe_convert_i8_errors(self, breaks1, breaks2, make_key):
        # GH 20636
        index = IntervalIndex.from_breaks(breaks1)
        key = make_key(breaks2)
 
        msg = (
            f"Cannot index an IntervalIndex of subtype {breaks1.dtype} with "
            f"values of dtype {breaks2.dtype}"
        )
        msg = re.escape(msg)
        with pytest.raises(ValueError, match=msg):
            index._maybe_convert_i8(key)
 
    def test_contains_method(self):
        # can select values that are IN the range of a value
        i = IntervalIndex.from_arrays([0, 1], [1, 2])
 
        expected = np.array([False, False], dtype="bool")
        actual = i.contains(0)
        tm.assert_numpy_array_equal(actual, expected)
        actual = i.contains(3)
        tm.assert_numpy_array_equal(actual, expected)
 
        expected = np.array([True, False], dtype="bool")
        actual = i.contains(0.5)
        tm.assert_numpy_array_equal(actual, expected)
        actual = i.contains(1)
        tm.assert_numpy_array_equal(actual, expected)
 
        # __contains__ not implemented for "interval in interval", follow
        # that for the contains method for now
        with pytest.raises(
            NotImplementedError, match="contains not implemented for two"
        ):
            i.contains(Interval(0, 1))
 
    def test_dropna(self, closed):
        expected = IntervalIndex.from_tuples([(0.0, 1.0), (1.0, 2.0)], closed=closed)
 
        ii = IntervalIndex.from_tuples([(0, 1), (1, 2), np.nan], closed=closed)
        result = ii.dropna()
        tm.assert_index_equal(result, expected)
 
        ii = IntervalIndex.from_arrays([0, 1, np.nan], [1, 2, np.nan], closed=closed)
        result = ii.dropna()
        tm.assert_index_equal(result, expected)
 
    def test_non_contiguous(self, closed):
        index = IntervalIndex.from_tuples([(0, 1), (2, 3)], closed=closed)
        target = [0.5, 1.5, 2.5]
        actual = index.get_indexer(target)
        expected = np.array([0, -1, 1], dtype="intp")
        tm.assert_numpy_array_equal(actual, expected)
 
        assert 1.5 not in index
 
    def test_isin(self, closed):
        index = self.create_index(closed=closed)
 
        expected = np.array([True] + [False] * (len(index) - 1))
        result = index.isin(index[:1])
        tm.assert_numpy_array_equal(result, expected)
 
        result = index.isin([index[0]])
        tm.assert_numpy_array_equal(result, expected)
 
        other = IntervalIndex.from_breaks(np.arange(-2, 10), closed=closed)
        expected = np.array([True] * (len(index) - 1) + [False])
        result = index.isin(other)
        tm.assert_numpy_array_equal(result, expected)
 
        result = index.isin(other.tolist())
        tm.assert_numpy_array_equal(result, expected)
 
        for other_closed in ["right", "left", "both", "neither"]:
            other = self.create_index(closed=other_closed)
            expected = np.repeat(closed == other_closed, len(index))
            result = index.isin(other)
            tm.assert_numpy_array_equal(result, expected)
 
            result = index.isin(other.tolist())
            tm.assert_numpy_array_equal(result, expected)
 
    def test_comparison(self):
        actual = Interval(0, 1) < self.index
        expected = np.array([False, True])
        tm.assert_numpy_array_equal(actual, expected)
 
        actual = Interval(0.5, 1.5) < self.index
        expected = np.array([False, True])
        tm.assert_numpy_array_equal(actual, expected)
        actual = self.index > Interval(0.5, 1.5)
        tm.assert_numpy_array_equal(actual, expected)
 
        actual = self.index == self.index
        expected = np.array([True, True])
        tm.assert_numpy_array_equal(actual, expected)
        actual = self.index <= self.index
        tm.assert_numpy_array_equal(actual, expected)
        actual = self.index >= self.index
        tm.assert_numpy_array_equal(actual, expected)
 
        actual = self.index < self.index
        expected = np.array([False, False])
        tm.assert_numpy_array_equal(actual, expected)
        actual = self.index > self.index
        tm.assert_numpy_array_equal(actual, expected)
 
        actual = self.index == IntervalIndex.from_breaks([0, 1, 2], "left")
        tm.assert_numpy_array_equal(actual, expected)
 
        actual = self.index == self.index.values
        tm.assert_numpy_array_equal(actual, np.array([True, True]))
        actual = self.index.values == self.index
        tm.assert_numpy_array_equal(actual, np.array([True, True]))
        actual = self.index <= self.index.values
        tm.assert_numpy_array_equal(actual, np.array([True, True]))
        actual = self.index != self.index.values
        tm.assert_numpy_array_equal(actual, np.array([False, False]))
        actual = self.index > self.index.values
        tm.assert_numpy_array_equal(actual, np.array([False, False]))
        actual = self.index.values > self.index
        tm.assert_numpy_array_equal(actual, np.array([False, False]))
 
        # invalid comparisons
        actual = self.index == 0
        tm.assert_numpy_array_equal(actual, np.array([False, False]))
        actual = self.index == self.index.left
        tm.assert_numpy_array_equal(actual, np.array([False, False]))
 
        msg = "|".join(
            [
                "not supported between instances of 'int' and '.*.Interval'",
                r"Invalid comparison between dtype=interval\[int64, right\] and ",
            ]
        )
        with pytest.raises(TypeError, match=msg):
            self.index > 0
        with pytest.raises(TypeError, match=msg):
            self.index <= 0
        with pytest.raises(TypeError, match=msg):
            self.index > np.arange(2)
 
        msg = "Lengths must match to compare"
        with pytest.raises(ValueError, match=msg):
            self.index > np.arange(3)
 
    def test_missing_values(self, closed):
        idx = Index(
            [np.nan, Interval(0, 1, closed=closed), Interval(1, 2, closed=closed)]
        )
        idx2 = IntervalIndex.from_arrays([np.nan, 0, 1], [np.nan, 1, 2], closed=closed)
        assert idx.equals(idx2)
 
        msg = (
            "missing values must be missing in the same location both left "
            "and right sides"
        )
        with pytest.raises(ValueError, match=msg):
            IntervalIndex.from_arrays(
                [np.nan, 0, 1], np.array([0, 1, 2]), closed=closed
            )
 
        tm.assert_numpy_array_equal(isna(idx), np.array([True, False, False]))
 
    def test_sort_values(self, closed):
        index = self.create_index(closed=closed)
 
        result = index.sort_values()
        tm.assert_index_equal(result, index)
 
        result = index.sort_values(ascending=False)
        tm.assert_index_equal(result, index[::-1])
 
        # with nan
        index = IntervalIndex([Interval(1, 2), np.nan, Interval(0, 1)])
 
        result = index.sort_values()
        expected = IntervalIndex([Interval(0, 1), Interval(1, 2), np.nan])
        tm.assert_index_equal(result, expected)
 
        result = index.sort_values(ascending=False, na_position="first")
        expected = IntervalIndex([np.nan, Interval(1, 2), Interval(0, 1)])
        tm.assert_index_equal(result, expected)
 
    @pytest.mark.parametrize("tz", [None, "US/Eastern"])
    def test_datetime(self, tz):
        start = Timestamp("2000-01-01", tz=tz)
        dates = date_range(start=start, periods=10)
        index = IntervalIndex.from_breaks(dates)
 
        # test mid
        start = Timestamp("2000-01-01T12:00", tz=tz)
        expected = date_range(start=start, periods=9)
        tm.assert_index_equal(index.mid, expected)
 
        # __contains__ doesn't check individual points
        assert Timestamp("2000-01-01", tz=tz) not in index
        assert Timestamp("2000-01-01T12", tz=tz) not in index
        assert Timestamp("2000-01-02", tz=tz) not in index
        iv_true = Interval(
            Timestamp("2000-01-02", tz=tz), Timestamp("2000-01-03", tz=tz)
        )
        iv_false = Interval(
            Timestamp("1999-12-31", tz=tz), Timestamp("2000-01-01", tz=tz)
        )
        assert iv_true in index
        assert iv_false not in index
 
        # .contains does check individual points
        assert not index.contains(Timestamp("2000-01-01", tz=tz)).any()
        assert index.contains(Timestamp("2000-01-01T12", tz=tz)).any()
        assert index.contains(Timestamp("2000-01-02", tz=tz)).any()
 
        # test get_indexer
        start = Timestamp("1999-12-31T12:00", tz=tz)
        target = date_range(start=start, periods=7, freq="12H")
        actual = index.get_indexer(target)
        expected = np.array([-1, -1, 0, 0, 1, 1, 2], dtype="intp")
        tm.assert_numpy_array_equal(actual, expected)
 
        start = Timestamp("2000-01-08T18:00", tz=tz)
        target = date_range(start=start, periods=7, freq="6H")
        actual = index.get_indexer(target)
        expected = np.array([7, 7, 8, 8, 8, 8, -1], dtype="intp")
        tm.assert_numpy_array_equal(actual, expected)
 
    def test_append(self, closed):
        index1 = IntervalIndex.from_arrays([0, 1], [1, 2], closed=closed)
        index2 = IntervalIndex.from_arrays([1, 2], [2, 3], closed=closed)
 
        result = index1.append(index2)
        expected = IntervalIndex.from_arrays([0, 1, 1, 2], [1, 2, 2, 3], closed=closed)
        tm.assert_index_equal(result, expected)
 
        result = index1.append([index1, index2])
        expected = IntervalIndex.from_arrays(
            [0, 1, 0, 1, 1, 2], [1, 2, 1, 2, 2, 3], closed=closed
        )
        tm.assert_index_equal(result, expected)
 
        for other_closed in {"left", "right", "both", "neither"} - {closed}:
            index_other_closed = IntervalIndex.from_arrays(
                [0, 1], [1, 2], closed=other_closed
            )
            result = index1.append(index_other_closed)
            expected = index1.astype(object).append(index_other_closed.astype(object))
            tm.assert_index_equal(result, expected)
 
    def test_is_non_overlapping_monotonic(self, closed):
        # Should be True in all cases
        tpls = [(0, 1), (2, 3), (4, 5), (6, 7)]
        idx = IntervalIndex.from_tuples(tpls, closed=closed)
        assert idx.is_non_overlapping_monotonic is True
 
        idx = IntervalIndex.from_tuples(tpls[::-1], closed=closed)
        assert idx.is_non_overlapping_monotonic is True
 
        # Should be False in all cases (overlapping)
        tpls = [(0, 2), (1, 3), (4, 5), (6, 7)]
        idx = IntervalIndex.from_tuples(tpls, closed=closed)
        assert idx.is_non_overlapping_monotonic is False
 
        idx = IntervalIndex.from_tuples(tpls[::-1], closed=closed)
        assert idx.is_non_overlapping_monotonic is False
 
        # Should be False in all cases (non-monotonic)
        tpls = [(0, 1), (2, 3), (6, 7), (4, 5)]
        idx = IntervalIndex.from_tuples(tpls, closed=closed)
        assert idx.is_non_overlapping_monotonic is False
 
        idx = IntervalIndex.from_tuples(tpls[::-1], closed=closed)
        assert idx.is_non_overlapping_monotonic is False
 
        # Should be False for closed='both', otherwise True (GH16560)
        if closed == "both":
            idx = IntervalIndex.from_breaks(range(4), closed=closed)
            assert idx.is_non_overlapping_monotonic is False
        else:
            idx = IntervalIndex.from_breaks(range(4), closed=closed)
            assert idx.is_non_overlapping_monotonic is True
 
    @pytest.mark.parametrize(
        "start, shift, na_value",
        [
            (0, 1, np.nan),
            (Timestamp("2018-01-01"), Timedelta("1 day"), pd.NaT),
            (Timedelta("0 days"), Timedelta("1 day"), pd.NaT),
        ],
    )
    def test_is_overlapping(self, start, shift, na_value, closed):
        # GH 23309
        # see test_interval_tree.py for extensive tests; interface tests here
 
        # non-overlapping
        tuples = [(start + n * shift, start + (n + 1) * shift) for n in (0, 2, 4)]
        index = IntervalIndex.from_tuples(tuples, closed=closed)
        assert index.is_overlapping is False
 
        # non-overlapping with NA
        tuples = [(na_value, na_value)] + tuples + [(na_value, na_value)]
        index = IntervalIndex.from_tuples(tuples, closed=closed)
        assert index.is_overlapping is False
 
        # overlapping
        tuples = [(start + n * shift, start + (n + 2) * shift) for n in range(3)]
        index = IntervalIndex.from_tuples(tuples, closed=closed)
        assert index.is_overlapping is True
 
        # overlapping with NA
        tuples = [(na_value, na_value)] + tuples + [(na_value, na_value)]
        index = IntervalIndex.from_tuples(tuples, closed=closed)
        assert index.is_overlapping is True
 
        # common endpoints
        tuples = [(start + n * shift, start + (n + 1) * shift) for n in range(3)]
        index = IntervalIndex.from_tuples(tuples, closed=closed)
        result = index.is_overlapping
        expected = closed == "both"
        assert result is expected
 
        # common endpoints with NA
        tuples = [(na_value, na_value)] + tuples + [(na_value, na_value)]
        index = IntervalIndex.from_tuples(tuples, closed=closed)
        result = index.is_overlapping
        assert result is expected
 
        # intervals with duplicate left values
        a = [10, 15, 20, 25, 30, 35, 40, 45, 45, 50, 55, 60, 65, 70, 75, 80, 85]
        b = [15, 20, 25, 30, 35, 40, 45, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90]
        index = IntervalIndex.from_arrays(a, b, closed="right")
        result = index.is_overlapping
        assert result is False
 
    @pytest.mark.parametrize(
        "tuples",
        [
            list(zip(range(10), range(1, 11))),
            list(
                zip(
                    date_range("20170101", periods=10),
                    date_range("20170101", periods=10),
                )
            ),
            list(
                zip(
                    timedelta_range("0 days", periods=10),
                    timedelta_range("1 day", periods=10),
                )
            ),
        ],
    )
    def test_to_tuples(self, tuples):
        # GH 18756
        idx = IntervalIndex.from_tuples(tuples)
        result = idx.to_tuples()
        expected = Index(com.asarray_tuplesafe(tuples))
        tm.assert_index_equal(result, expected)
 
    @pytest.mark.parametrize(
        "tuples",
        [
            list(zip(range(10), range(1, 11))) + [np.nan],
            list(
                zip(
                    date_range("20170101", periods=10),
                    date_range("20170101", periods=10),
                )
            )
            + [np.nan],
            list(
                zip(
                    timedelta_range("0 days", periods=10),
                    timedelta_range("1 day", periods=10),
                )
            )
            + [np.nan],
        ],
    )
    @pytest.mark.parametrize("na_tuple", [True, False])
    def test_to_tuples_na(self, tuples, na_tuple):
        # GH 18756
        idx = IntervalIndex.from_tuples(tuples)
        result = idx.to_tuples(na_tuple=na_tuple)
 
        # check the non-NA portion
        expected_notna = Index(com.asarray_tuplesafe(tuples[:-1]))
        result_notna = result[:-1]
        tm.assert_index_equal(result_notna, expected_notna)
 
        # check the NA portion
        result_na = result[-1]
        if na_tuple:
            assert isinstance(result_na, tuple)
            assert len(result_na) == 2
            assert all(isna(x) for x in result_na)
        else:
            assert isna(result_na)
 
    def test_nbytes(self):
        # GH 19209
        left = np.arange(0, 4, dtype="i8")
        right = np.arange(1, 5, dtype="i8")
 
        result = IntervalIndex.from_arrays(left, right).nbytes
        expected = 64  # 4 * 8 * 2
        assert result == expected
 
    @pytest.mark.parametrize("new_closed", ["left", "right", "both", "neither"])
    def test_set_closed(self, name, closed, new_closed):
        # GH 21670
        index = interval_range(0, 5, closed=closed, name=name)
        result = index.set_closed(new_closed)
        expected = interval_range(0, 5, closed=new_closed, name=name)
        tm.assert_index_equal(result, expected)
 
    @pytest.mark.parametrize("bad_closed", ["foo", 10, "LEFT", True, False])
    def test_set_closed_errors(self, bad_closed):
        # GH 21670
        index = interval_range(0, 5)
        msg = f"invalid option for 'closed': {bad_closed}"
        with pytest.raises(ValueError, match=msg):
            index.set_closed(bad_closed)
 
    def test_is_all_dates(self):
        # GH 23576
        year_2017 = Interval(
            Timestamp("2017-01-01 00:00:00"), Timestamp("2018-01-01 00:00:00")
        )
        year_2017_index = IntervalIndex([year_2017])
        assert not year_2017_index._is_all_dates
 
 
def test_dir():
    # GH#27571 dir(interval_index) should not raise
    index = IntervalIndex.from_arrays([0, 1], [1, 2])
    result = dir(index)
    assert "str" not in result
 
 
def test_searchsorted_different_argument_classes(listlike_box):
    # https://github.com/pandas-dev/pandas/issues/32762
    values = IntervalIndex([Interval(0, 1), Interval(1, 2)])
    result = values.searchsorted(listlike_box(values))
    expected = np.array([0, 1], dtype=result.dtype)
    tm.assert_numpy_array_equal(result, expected)
 
    result = values._data.searchsorted(listlike_box(values))
    tm.assert_numpy_array_equal(result, expected)
 
 
@pytest.mark.parametrize(
    "arg", [[1, 2], ["a", "b"], [Timestamp("2020-01-01", tz="Europe/London")] * 2]
)
def test_searchsorted_invalid_argument(arg):
    values = IntervalIndex([Interval(0, 1), Interval(1, 2)])
    msg = "'<' not supported between instances of 'pandas._libs.interval.Interval' and "
    with pytest.raises(TypeError, match=msg):
        values.searchsorted(arg)