zmc
2023-12-22 9fdbf60165db0400c2e8e6be2dc6e88138ac719a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import numpy as np
import pytest
 
from pandas._libs.tslibs import IncompatibleFrequency
 
from pandas import (
    DataFrame,
    Period,
    Series,
    Timestamp,
    date_range,
    period_range,
    to_datetime,
)
import pandas._testing as tm
 
 
@pytest.fixture
def date_range_frame():
    """
    Fixture for DataFrame of ints with date_range index
 
    Columns are ['A', 'B'].
    """
    N = 50
    rng = date_range("1/1/1990", periods=N, freq="53s")
    return DataFrame({"A": np.arange(N), "B": np.arange(N)}, index=rng)
 
 
class TestFrameAsof:
    def test_basic(self, date_range_frame):
        # Explicitly cast to float to avoid implicit cast when setting np.nan
        df = date_range_frame.astype({"A": "float"})
        N = 50
        df.loc[df.index[15:30], "A"] = np.nan
        dates = date_range("1/1/1990", periods=N * 3, freq="25s")
 
        result = df.asof(dates)
        assert result.notna().all(1).all()
        lb = df.index[14]
        ub = df.index[30]
 
        dates = list(dates)
 
        result = df.asof(dates)
        assert result.notna().all(1).all()
 
        mask = (result.index >= lb) & (result.index < ub)
        rs = result[mask]
        assert (rs == 14).all(1).all()
 
    def test_subset(self, date_range_frame):
        N = 10
        # explicitly cast to float to avoid implicit upcast when setting to np.nan
        df = date_range_frame.iloc[:N].copy().astype({"A": "float"})
        df.loc[df.index[4:8], "A"] = np.nan
        dates = date_range("1/1/1990", periods=N * 3, freq="25s")
 
        # with a subset of A should be the same
        result = df.asof(dates, subset="A")
        expected = df.asof(dates)
        tm.assert_frame_equal(result, expected)
 
        # same with A/B
        result = df.asof(dates, subset=["A", "B"])
        expected = df.asof(dates)
        tm.assert_frame_equal(result, expected)
 
        # B gives df.asof
        result = df.asof(dates, subset="B")
        expected = df.resample("25s", closed="right").ffill().reindex(dates)
        expected.iloc[20:] = 9
        # no "missing", so "B" can retain int dtype (df["A"].dtype platform-dependent)
        expected["B"] = expected["B"].astype(df["B"].dtype)
 
        tm.assert_frame_equal(result, expected)
 
    def test_missing(self, date_range_frame):
        # GH 15118
        # no match found - `where` value before earliest date in index
        N = 10
        df = date_range_frame.iloc[:N].copy()
 
        result = df.asof("1989-12-31")
 
        expected = Series(
            index=["A", "B"], name=Timestamp("1989-12-31"), dtype=np.float64
        )
        tm.assert_series_equal(result, expected)
 
        result = df.asof(to_datetime(["1989-12-31"]))
        expected = DataFrame(
            index=to_datetime(["1989-12-31"]), columns=["A", "B"], dtype="float64"
        )
        tm.assert_frame_equal(result, expected)
 
        # Check that we handle PeriodIndex correctly, dont end up with
        #  period.ordinal for series name
        df = df.to_period("D")
        result = df.asof("1989-12-31")
        assert isinstance(result.name, Period)
 
    def test_asof_all_nans(self, frame_or_series):
        # GH 15713
        # DataFrame/Series is all nans
        result = frame_or_series([np.nan]).asof([0])
        expected = frame_or_series([np.nan])
        tm.assert_equal(result, expected)
 
    def test_all_nans(self, date_range_frame):
        # GH 15713
        # DataFrame is all nans
 
        # testing non-default indexes, multiple inputs
        N = 150
        rng = date_range_frame.index
        dates = date_range("1/1/1990", periods=N, freq="25s")
        result = DataFrame(np.nan, index=rng, columns=["A"]).asof(dates)
        expected = DataFrame(np.nan, index=dates, columns=["A"])
        tm.assert_frame_equal(result, expected)
 
        # testing multiple columns
        dates = date_range("1/1/1990", periods=N, freq="25s")
        result = DataFrame(np.nan, index=rng, columns=["A", "B", "C"]).asof(dates)
        expected = DataFrame(np.nan, index=dates, columns=["A", "B", "C"])
        tm.assert_frame_equal(result, expected)
 
        # testing scalar input
        result = DataFrame(np.nan, index=[1, 2], columns=["A", "B"]).asof([3])
        expected = DataFrame(np.nan, index=[3], columns=["A", "B"])
        tm.assert_frame_equal(result, expected)
 
        result = DataFrame(np.nan, index=[1, 2], columns=["A", "B"]).asof(3)
        expected = Series(np.nan, index=["A", "B"], name=3)
        tm.assert_series_equal(result, expected)
 
    @pytest.mark.parametrize(
        "stamp,expected",
        [
            (
                Timestamp("2018-01-01 23:22:43.325+00:00"),
                Series(2, name=Timestamp("2018-01-01 23:22:43.325+00:00")),
            ),
            (
                Timestamp("2018-01-01 22:33:20.682+01:00"),
                Series(1, name=Timestamp("2018-01-01 22:33:20.682+01:00")),
            ),
        ],
    )
    def test_time_zone_aware_index(self, stamp, expected):
        # GH21194
        # Testing awareness of DataFrame index considering different
        # UTC and timezone
        df = DataFrame(
            data=[1, 2],
            index=[
                Timestamp("2018-01-01 21:00:05.001+00:00"),
                Timestamp("2018-01-01 22:35:10.550+00:00"),
            ],
        )
 
        result = df.asof(stamp)
        tm.assert_series_equal(result, expected)
 
    def test_is_copy(self, date_range_frame):
        # GH-27357, GH-30784: ensure the result of asof is an actual copy and
        # doesn't track the parent dataframe / doesn't give SettingWithCopy warnings
        df = date_range_frame.astype({"A": "float"})
        N = 50
        df.loc[df.index[15:30], "A"] = np.nan
        dates = date_range("1/1/1990", periods=N * 3, freq="25s")
 
        result = df.asof(dates)
 
        with tm.assert_produces_warning(None):
            result["C"] = 1
 
    def test_asof_periodindex_mismatched_freq(self):
        N = 50
        rng = period_range("1/1/1990", periods=N, freq="H")
        df = DataFrame(np.random.randn(N), index=rng)
 
        # Mismatched freq
        msg = "Input has different freq"
        with pytest.raises(IncompatibleFrequency, match=msg):
            df.asof(rng.asfreq("D"))
 
    def test_asof_preserves_bool_dtype(self):
        # GH#16063 was casting bools to floats
        dti = date_range("2017-01-01", freq="MS", periods=4)
        ser = Series([True, False, True], index=dti[:-1])
 
        ts = dti[-1]
        res = ser.asof([ts])
 
        expected = Series([True], index=[ts])
        tm.assert_series_equal(res, expected)