zmc
2023-12-22 9fdbf60165db0400c2e8e6be2dc6e88138ac719a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import numpy as np
import pytest
 
import pandas as pd
from pandas import Timedelta
import pandas._testing as tm
from pandas.core import nanops
from pandas.core.arrays import TimedeltaArray
 
 
class TestReductions:
    @pytest.mark.parametrize("name", ["std", "min", "max", "median", "mean"])
    @pytest.mark.parametrize("skipna", [True, False])
    def test_reductions_empty(self, name, skipna):
        tdi = pd.TimedeltaIndex([])
        arr = tdi.array
 
        result = getattr(tdi, name)(skipna=skipna)
        assert result is pd.NaT
 
        result = getattr(arr, name)(skipna=skipna)
        assert result is pd.NaT
 
    @pytest.mark.parametrize("skipna", [True, False])
    def test_sum_empty(self, skipna):
        tdi = pd.TimedeltaIndex([])
        arr = tdi.array
 
        result = tdi.sum(skipna=skipna)
        assert isinstance(result, Timedelta)
        assert result == Timedelta(0)
 
        result = arr.sum(skipna=skipna)
        assert isinstance(result, Timedelta)
        assert result == Timedelta(0)
 
    def test_min_max(self):
        arr = TimedeltaArray._from_sequence(["3H", "3H", "NaT", "2H", "5H", "4H"])
 
        result = arr.min()
        expected = Timedelta("2H")
        assert result == expected
 
        result = arr.max()
        expected = Timedelta("5H")
        assert result == expected
 
        result = arr.min(skipna=False)
        assert result is pd.NaT
 
        result = arr.max(skipna=False)
        assert result is pd.NaT
 
    def test_sum(self):
        tdi = pd.TimedeltaIndex(["3H", "3H", "NaT", "2H", "5H", "4H"])
        arr = tdi.array
 
        result = arr.sum(skipna=True)
        expected = Timedelta(hours=17)
        assert isinstance(result, Timedelta)
        assert result == expected
 
        result = tdi.sum(skipna=True)
        assert isinstance(result, Timedelta)
        assert result == expected
 
        result = arr.sum(skipna=False)
        assert result is pd.NaT
 
        result = tdi.sum(skipna=False)
        assert result is pd.NaT
 
        result = arr.sum(min_count=9)
        assert result is pd.NaT
 
        result = tdi.sum(min_count=9)
        assert result is pd.NaT
 
        result = arr.sum(min_count=1)
        assert isinstance(result, Timedelta)
        assert result == expected
 
        result = tdi.sum(min_count=1)
        assert isinstance(result, Timedelta)
        assert result == expected
 
    def test_npsum(self):
        # GH#25282, GH#25335 np.sum should return a Timedelta, not timedelta64
        tdi = pd.TimedeltaIndex(["3H", "3H", "2H", "5H", "4H"])
        arr = tdi.array
 
        result = np.sum(tdi)
        expected = Timedelta(hours=17)
        assert isinstance(result, Timedelta)
        assert result == expected
 
        result = np.sum(arr)
        assert isinstance(result, Timedelta)
        assert result == expected
 
    def test_sum_2d_skipna_false(self):
        arr = np.arange(8).astype(np.int64).view("m8[s]").astype("m8[ns]").reshape(4, 2)
        arr[-1, -1] = "Nat"
 
        tda = TimedeltaArray(arr)
 
        result = tda.sum(skipna=False)
        assert result is pd.NaT
 
        result = tda.sum(axis=0, skipna=False)
        expected = pd.TimedeltaIndex([Timedelta(seconds=12), pd.NaT])._values
        tm.assert_timedelta_array_equal(result, expected)
 
        result = tda.sum(axis=1, skipna=False)
        expected = pd.TimedeltaIndex(
            [
                Timedelta(seconds=1),
                Timedelta(seconds=5),
                Timedelta(seconds=9),
                pd.NaT,
            ]
        )._values
        tm.assert_timedelta_array_equal(result, expected)
 
    # Adding a Timestamp makes this a test for DatetimeArray.std
    @pytest.mark.parametrize(
        "add",
        [
            Timedelta(0),
            pd.Timestamp("2021-01-01"),
            pd.Timestamp("2021-01-01", tz="UTC"),
            pd.Timestamp("2021-01-01", tz="Asia/Tokyo"),
        ],
    )
    def test_std(self, add):
        tdi = pd.TimedeltaIndex(["0H", "4H", "NaT", "4H", "0H", "2H"]) + add
        arr = tdi.array
 
        result = arr.std(skipna=True)
        expected = Timedelta(hours=2)
        assert isinstance(result, Timedelta)
        assert result == expected
 
        result = tdi.std(skipna=True)
        assert isinstance(result, Timedelta)
        assert result == expected
 
        if getattr(arr, "tz", None) is None:
            result = nanops.nanstd(np.asarray(arr), skipna=True)
            assert isinstance(result, np.timedelta64)
            assert result == expected
 
        result = arr.std(skipna=False)
        assert result is pd.NaT
 
        result = tdi.std(skipna=False)
        assert result is pd.NaT
 
        if getattr(arr, "tz", None) is None:
            result = nanops.nanstd(np.asarray(arr), skipna=False)
            assert isinstance(result, np.timedelta64)
            assert np.isnat(result)
 
    def test_median(self):
        tdi = pd.TimedeltaIndex(["0H", "3H", "NaT", "5H06m", "0H", "2H"])
        arr = tdi.array
 
        result = arr.median(skipna=True)
        expected = Timedelta(hours=2)
        assert isinstance(result, Timedelta)
        assert result == expected
 
        result = tdi.median(skipna=True)
        assert isinstance(result, Timedelta)
        assert result == expected
 
        result = arr.median(skipna=False)
        assert result is pd.NaT
 
        result = tdi.median(skipna=False)
        assert result is pd.NaT
 
    def test_mean(self):
        tdi = pd.TimedeltaIndex(["0H", "3H", "NaT", "5H06m", "0H", "2H"])
        arr = tdi._data
 
        # manually verified result
        expected = Timedelta(arr.dropna()._ndarray.mean())
 
        result = arr.mean()
        assert result == expected
        result = arr.mean(skipna=False)
        assert result is pd.NaT
 
        result = arr.dropna().mean(skipna=False)
        assert result == expected
 
        result = arr.mean(axis=0)
        assert result == expected
 
    def test_mean_2d(self):
        tdi = pd.timedelta_range("14 days", periods=6)
        tda = tdi._data.reshape(3, 2)
 
        result = tda.mean(axis=0)
        expected = tda[1]
        tm.assert_timedelta_array_equal(result, expected)
 
        result = tda.mean(axis=1)
        expected = tda[:, 0] + Timedelta(hours=12)
        tm.assert_timedelta_array_equal(result, expected)
 
        result = tda.mean(axis=None)
        expected = tdi.mean()
        assert result == expected