zmc
2023-12-22 9fdbf60165db0400c2e8e6be2dc6e88138ac719a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
"""
Table Schema builders
 
https://specs.frictionlessdata.io/table-schema/
"""
from __future__ import annotations
 
from typing import (
    TYPE_CHECKING,
    Any,
    cast,
)
import warnings
 
from pandas._libs.json import loads
from pandas._libs.tslibs import timezones
from pandas._typing import (
    DtypeObj,
    JSONSerializable,
)
from pandas.util._exceptions import find_stack_level
 
from pandas.core.dtypes.base import _registry as registry
from pandas.core.dtypes.common import (
    is_bool_dtype,
    is_categorical_dtype,
    is_datetime64_dtype,
    is_datetime64tz_dtype,
    is_extension_array_dtype,
    is_integer_dtype,
    is_numeric_dtype,
    is_period_dtype,
    is_string_dtype,
    is_timedelta64_dtype,
)
from pandas.core.dtypes.dtypes import CategoricalDtype
 
from pandas import DataFrame
import pandas.core.common as com
 
if TYPE_CHECKING:
    from pandas import Series
    from pandas.core.indexes.multi import MultiIndex
 
 
TABLE_SCHEMA_VERSION = "1.4.0"
 
 
def as_json_table_type(x: DtypeObj) -> str:
    """
    Convert a NumPy / pandas type to its corresponding json_table.
 
    Parameters
    ----------
    x : np.dtype or ExtensionDtype
 
    Returns
    -------
    str
        the Table Schema data types
 
    Notes
    -----
    This table shows the relationship between NumPy / pandas dtypes,
    and Table Schema dtypes.
 
    ==============  =================
    Pandas type     Table Schema type
    ==============  =================
    int64           integer
    float64         number
    bool            boolean
    datetime64[ns]  datetime
    timedelta64[ns] duration
    object          str
    categorical     any
    =============== =================
    """
    if is_integer_dtype(x):
        return "integer"
    elif is_bool_dtype(x):
        return "boolean"
    elif is_numeric_dtype(x):
        return "number"
    elif is_datetime64_dtype(x) or is_datetime64tz_dtype(x) or is_period_dtype(x):
        return "datetime"
    elif is_timedelta64_dtype(x):
        return "duration"
    elif is_categorical_dtype(x):
        return "any"
    elif is_extension_array_dtype(x):
        return "any"
    elif is_string_dtype(x):
        return "string"
    else:
        return "any"
 
 
def set_default_names(data):
    """Sets index names to 'index' for regular, or 'level_x' for Multi"""
    if com.all_not_none(*data.index.names):
        nms = data.index.names
        if len(nms) == 1 and data.index.name == "index":
            warnings.warn(
                "Index name of 'index' is not round-trippable.",
                stacklevel=find_stack_level(),
            )
        elif len(nms) > 1 and any(x.startswith("level_") for x in nms):
            warnings.warn(
                "Index names beginning with 'level_' are not round-trippable.",
                stacklevel=find_stack_level(),
            )
        return data
 
    data = data.copy()
    if data.index.nlevels > 1:
        data.index.names = com.fill_missing_names(data.index.names)
    else:
        data.index.name = data.index.name or "index"
    return data
 
 
def convert_pandas_type_to_json_field(arr) -> dict[str, JSONSerializable]:
    dtype = arr.dtype
    name: JSONSerializable
    if arr.name is None:
        name = "values"
    else:
        name = arr.name
    field: dict[str, JSONSerializable] = {
        "name": name,
        "type": as_json_table_type(dtype),
    }
 
    if is_categorical_dtype(dtype):
        cats = dtype.categories
        ordered = dtype.ordered
 
        field["constraints"] = {"enum": list(cats)}
        field["ordered"] = ordered
    elif is_period_dtype(dtype):
        field["freq"] = dtype.freq.freqstr
    elif is_datetime64tz_dtype(dtype):
        if timezones.is_utc(dtype.tz):
            # timezone.utc has no "zone" attr
            field["tz"] = "UTC"
        else:
            field["tz"] = dtype.tz.zone
    elif is_extension_array_dtype(dtype):
        field["extDtype"] = dtype.name
    return field
 
 
def convert_json_field_to_pandas_type(field) -> str | CategoricalDtype:
    """
    Converts a JSON field descriptor into its corresponding NumPy / pandas type
 
    Parameters
    ----------
    field
        A JSON field descriptor
 
    Returns
    -------
    dtype
 
    Raises
    ------
    ValueError
        If the type of the provided field is unknown or currently unsupported
 
    Examples
    --------
    >>> convert_json_field_to_pandas_type({"name": "an_int", "type": "integer"})
    'int64'
 
    >>> convert_json_field_to_pandas_type(
    ...     {
    ...         "name": "a_categorical",
    ...         "type": "any",
    ...         "constraints": {"enum": ["a", "b", "c"]},
    ...         "ordered": True,
    ...     }
    ... )
    CategoricalDtype(categories=['a', 'b', 'c'], ordered=True)
 
    >>> convert_json_field_to_pandas_type({"name": "a_datetime", "type": "datetime"})
    'datetime64[ns]'
 
    >>> convert_json_field_to_pandas_type(
    ...     {"name": "a_datetime_with_tz", "type": "datetime", "tz": "US/Central"}
    ... )
    'datetime64[ns, US/Central]'
    """
    typ = field["type"]
    if typ == "string":
        return "object"
    elif typ == "integer":
        return field.get("extDtype", "int64")
    elif typ == "number":
        return field.get("extDtype", "float64")
    elif typ == "boolean":
        return field.get("extDtype", "bool")
    elif typ == "duration":
        return "timedelta64"
    elif typ == "datetime":
        if field.get("tz"):
            return f"datetime64[ns, {field['tz']}]"
        elif field.get("freq"):
            # GH#47747 using datetime over period to minimize the change surface
            return f"period[{field['freq']}]"
        else:
            return "datetime64[ns]"
    elif typ == "any":
        if "constraints" in field and "ordered" in field:
            return CategoricalDtype(
                categories=field["constraints"]["enum"], ordered=field["ordered"]
            )
        elif "extDtype" in field:
            return registry.find(field["extDtype"])
        else:
            return "object"
 
    raise ValueError(f"Unsupported or invalid field type: {typ}")
 
 
def build_table_schema(
    data: DataFrame | Series,
    index: bool = True,
    primary_key: bool | None = None,
    version: bool = True,
) -> dict[str, JSONSerializable]:
    """
    Create a Table schema from ``data``.
 
    Parameters
    ----------
    data : Series, DataFrame
    index : bool, default True
        Whether to include ``data.index`` in the schema.
    primary_key : bool or None, default True
        Column names to designate as the primary key.
        The default `None` will set `'primaryKey'` to the index
        level or levels if the index is unique.
    version : bool, default True
        Whether to include a field `pandas_version` with the version
        of pandas that last revised the table schema. This version
        can be different from the installed pandas version.
 
    Returns
    -------
    dict
 
    Notes
    -----
    See `Table Schema
    <https://pandas.pydata.org/docs/user_guide/io.html#table-schema>`__ for
    conversion types.
    Timedeltas as converted to ISO8601 duration format with
    9 decimal places after the seconds field for nanosecond precision.
 
    Categoricals are converted to the `any` dtype, and use the `enum` field
    constraint to list the allowed values. The `ordered` attribute is included
    in an `ordered` field.
 
    Examples
    --------
    >>> from pandas.io.json._table_schema import build_table_schema
    >>> df = pd.DataFrame(
    ...     {'A': [1, 2, 3],
    ...      'B': ['a', 'b', 'c'],
    ...      'C': pd.date_range('2016-01-01', freq='d', periods=3),
    ...     }, index=pd.Index(range(3), name='idx'))
    >>> build_table_schema(df)
    {'fields': \
[{'name': 'idx', 'type': 'integer'}, \
{'name': 'A', 'type': 'integer'}, \
{'name': 'B', 'type': 'string'}, \
{'name': 'C', 'type': 'datetime'}], \
'primaryKey': ['idx'], \
'pandas_version': '1.4.0'}
    """
    if index is True:
        data = set_default_names(data)
 
    schema: dict[str, Any] = {}
    fields = []
 
    if index:
        if data.index.nlevels > 1:
            data.index = cast("MultiIndex", data.index)
            for level, name in zip(data.index.levels, data.index.names):
                new_field = convert_pandas_type_to_json_field(level)
                new_field["name"] = name
                fields.append(new_field)
        else:
            fields.append(convert_pandas_type_to_json_field(data.index))
 
    if data.ndim > 1:
        for column, s in data.items():
            fields.append(convert_pandas_type_to_json_field(s))
    else:
        fields.append(convert_pandas_type_to_json_field(data))
 
    schema["fields"] = fields
    if index and data.index.is_unique and primary_key is None:
        if data.index.nlevels == 1:
            schema["primaryKey"] = [data.index.name]
        else:
            schema["primaryKey"] = data.index.names
    elif primary_key is not None:
        schema["primaryKey"] = primary_key
 
    if version:
        schema["pandas_version"] = TABLE_SCHEMA_VERSION
    return schema
 
 
def parse_table_schema(json, precise_float):
    """
    Builds a DataFrame from a given schema
 
    Parameters
    ----------
    json :
        A JSON table schema
    precise_float : bool
        Flag controlling precision when decoding string to double values, as
        dictated by ``read_json``
 
    Returns
    -------
    df : DataFrame
 
    Raises
    ------
    NotImplementedError
        If the JSON table schema contains either timezone or timedelta data
 
    Notes
    -----
        Because :func:`DataFrame.to_json` uses the string 'index' to denote a
        name-less :class:`Index`, this function sets the name of the returned
        :class:`DataFrame` to ``None`` when said string is encountered with a
        normal :class:`Index`. For a :class:`MultiIndex`, the same limitation
        applies to any strings beginning with 'level_'. Therefore, an
        :class:`Index` name of 'index'  and :class:`MultiIndex` names starting
        with 'level_' are not supported.
 
    See Also
    --------
    build_table_schema : Inverse function.
    pandas.read_json
    """
    table = loads(json, precise_float=precise_float)
    col_order = [field["name"] for field in table["schema"]["fields"]]
    df = DataFrame(table["data"], columns=col_order)[col_order]
 
    dtypes = {
        field["name"]: convert_json_field_to_pandas_type(field)
        for field in table["schema"]["fields"]
    }
 
    # No ISO constructor for Timedelta as of yet, so need to raise
    if "timedelta64" in dtypes.values():
        raise NotImplementedError(
            'table="orient" can not yet read ISO-formatted Timedelta data'
        )
 
    df = df.astype(dtypes)
 
    if "primaryKey" in table["schema"]:
        df = df.set_index(table["schema"]["primaryKey"])
        if len(df.index.names) == 1:
            if df.index.name == "index":
                df.index.name = None
        else:
            df.index.names = [
                None if x.startswith("level_") else x for x in df.index.names
            ]
 
    return df