zmc
2023-12-22 9fdbf60165db0400c2e8e6be2dc6e88138ac719a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
from __future__ import annotations
 
import copy
from textwrap import dedent
from typing import (
    TYPE_CHECKING,
    Callable,
    Hashable,
    Literal,
    cast,
    final,
    no_type_check,
)
import warnings
 
import numpy as np
 
from pandas._libs import lib
from pandas._libs.tslibs import (
    BaseOffset,
    IncompatibleFrequency,
    NaT,
    Period,
    Timedelta,
    Timestamp,
    to_offset,
)
from pandas._typing import (
    AnyArrayLike,
    Axis,
    AxisInt,
    Frequency,
    IndexLabel,
    NDFrameT,
    QuantileInterpolation,
    T,
    TimedeltaConvertibleTypes,
    TimeGrouperOrigin,
    TimestampConvertibleTypes,
    npt,
)
from pandas.compat.numpy import function as nv
from pandas.errors import AbstractMethodError
from pandas.util._decorators import (
    Appender,
    Substitution,
    doc,
)
from pandas.util._exceptions import find_stack_level
 
from pandas.core.dtypes.generic import (
    ABCDataFrame,
    ABCSeries,
)
 
import pandas.core.algorithms as algos
from pandas.core.apply import ResamplerWindowApply
from pandas.core.base import PandasObject
import pandas.core.common as com
from pandas.core.generic import (
    NDFrame,
    _shared_docs,
)
from pandas.core.groupby.generic import SeriesGroupBy
from pandas.core.groupby.groupby import (
    BaseGroupBy,
    GroupBy,
    _pipe_template,
    get_groupby,
)
from pandas.core.groupby.grouper import Grouper
from pandas.core.groupby.ops import BinGrouper
from pandas.core.indexes.datetimes import (
    DatetimeIndex,
    date_range,
)
from pandas.core.indexes.period import (
    PeriodIndex,
    period_range,
)
from pandas.core.indexes.timedeltas import (
    TimedeltaIndex,
    timedelta_range,
)
 
from pandas.tseries.frequencies import (
    is_subperiod,
    is_superperiod,
)
from pandas.tseries.offsets import (
    Day,
    Tick,
)
 
if TYPE_CHECKING:
    from pandas import (
        DataFrame,
        Index,
        Series,
    )
 
_shared_docs_kwargs: dict[str, str] = {}
 
 
class Resampler(BaseGroupBy, PandasObject):
    """
    Class for resampling datetimelike data, a groupby-like operation.
    See aggregate, transform, and apply functions on this object.
 
    It's easiest to use obj.resample(...) to use Resampler.
 
    Parameters
    ----------
    obj : Series or DataFrame
    groupby : TimeGrouper
    axis : int, default 0
    kind : str or None
        'period', 'timestamp' to override default index treatment
 
    Returns
    -------
    a Resampler of the appropriate type
 
    Notes
    -----
    After resampling, see aggregate, apply, and transform functions.
    """
 
    grouper: BinGrouper
    _timegrouper: TimeGrouper
    binner: DatetimeIndex | TimedeltaIndex | PeriodIndex  # depends on subclass
    exclusions: frozenset[Hashable] = frozenset()  # for SelectionMixin compat
    _internal_names_set = set({"obj", "ax", "_indexer"})
 
    # to the groupby descriptor
    _attributes = [
        "freq",
        "axis",
        "closed",
        "label",
        "convention",
        "kind",
        "origin",
        "offset",
    ]
 
    def __init__(
        self,
        obj: NDFrame,
        timegrouper: TimeGrouper,
        axis: Axis = 0,
        kind=None,
        *,
        gpr_index: Index,
        group_keys: bool = False,
        selection=None,
    ) -> None:
        self._timegrouper = timegrouper
        self.keys = None
        self.sort = True
        self.axis = obj._get_axis_number(axis)
        self.kind = kind
        self.group_keys = group_keys
        self.as_index = True
 
        self.obj, self.ax, self._indexer = self._timegrouper._set_grouper(
            self._convert_obj(obj), sort=True, gpr_index=gpr_index
        )
        self.binner, self.grouper = self._get_binner()
        self._selection = selection
        if self._timegrouper.key is not None:
            self.exclusions = frozenset([self._timegrouper.key])
        else:
            self.exclusions = frozenset()
 
    def __str__(self) -> str:
        """
        Provide a nice str repr of our rolling object.
        """
        attrs = (
            f"{k}={getattr(self._timegrouper, k)}"
            for k in self._attributes
            if getattr(self._timegrouper, k, None) is not None
        )
        return f"{type(self).__name__} [{', '.join(attrs)}]"
 
    def __getattr__(self, attr: str):
        if attr in self._internal_names_set:
            return object.__getattribute__(self, attr)
        if attr in self._attributes:
            return getattr(self._timegrouper, attr)
        if attr in self.obj:
            return self[attr]
 
        return object.__getattribute__(self, attr)
 
    @property
    def _from_selection(self) -> bool:
        """
        Is the resampling from a DataFrame column or MultiIndex level.
        """
        # upsampling and PeriodIndex resampling do not work
        # with selection, this state used to catch and raise an error
        return self._timegrouper is not None and (
            self._timegrouper.key is not None or self._timegrouper.level is not None
        )
 
    def _convert_obj(self, obj: NDFrameT) -> NDFrameT:
        """
        Provide any conversions for the object in order to correctly handle.
 
        Parameters
        ----------
        obj : Series or DataFrame
 
        Returns
        -------
        Series or DataFrame
        """
        return obj._consolidate()
 
    def _get_binner_for_time(self):
        raise AbstractMethodError(self)
 
    @final
    def _get_binner(self):
        """
        Create the BinGrouper, assume that self.set_grouper(obj)
        has already been called.
        """
        binner, bins, binlabels = self._get_binner_for_time()
        assert len(bins) == len(binlabels)
        bin_grouper = BinGrouper(bins, binlabels, indexer=self._indexer)
        return binner, bin_grouper
 
    @Substitution(
        klass="Resampler",
        examples="""
    >>> df = pd.DataFrame({'A': [1, 2, 3, 4]},
    ...                   index=pd.date_range('2012-08-02', periods=4))
    >>> df
                A
    2012-08-02  1
    2012-08-03  2
    2012-08-04  3
    2012-08-05  4
 
    To get the difference between each 2-day period's maximum and minimum
    value in one pass, you can do
 
    >>> df.resample('2D').pipe(lambda x: x.max() - x.min())
                A
    2012-08-02  1
    2012-08-04  1""",
    )
    @Appender(_pipe_template)
    def pipe(
        self,
        func: Callable[..., T] | tuple[Callable[..., T], str],
        *args,
        **kwargs,
    ) -> T:
        return super().pipe(func, *args, **kwargs)
 
    _agg_see_also_doc = dedent(
        """
    See Also
    --------
    DataFrame.groupby.aggregate : Aggregate using callable, string, dict,
        or list of string/callables.
    DataFrame.resample.transform : Transforms the Series on each group
        based on the given function.
    DataFrame.aggregate: Aggregate using one or more
        operations over the specified axis.
    """
    )
 
    _agg_examples_doc = dedent(
        """
    Examples
    --------
    >>> s = pd.Series([1, 2, 3, 4, 5],
    ...               index=pd.date_range('20130101', periods=5, freq='s'))
    >>> s
    2013-01-01 00:00:00    1
    2013-01-01 00:00:01    2
    2013-01-01 00:00:02    3
    2013-01-01 00:00:03    4
    2013-01-01 00:00:04    5
    Freq: S, dtype: int64
 
    >>> r = s.resample('2s')
 
    >>> r.agg(np.sum)
    2013-01-01 00:00:00    3
    2013-01-01 00:00:02    7
    2013-01-01 00:00:04    5
    Freq: 2S, dtype: int64
 
    >>> r.agg(['sum', 'mean', 'max'])
                         sum  mean  max
    2013-01-01 00:00:00    3   1.5    2
    2013-01-01 00:00:02    7   3.5    4
    2013-01-01 00:00:04    5   5.0    5
 
    >>> r.agg({'result': lambda x: x.mean() / x.std(),
    ...        'total': np.sum})
                           result  total
    2013-01-01 00:00:00  2.121320      3
    2013-01-01 00:00:02  4.949747      7
    2013-01-01 00:00:04       NaN      5
 
    >>> r.agg(average="mean", total="sum")
                             average  total
    2013-01-01 00:00:00      1.5      3
    2013-01-01 00:00:02      3.5      7
    2013-01-01 00:00:04      5.0      5
    """
    )
 
    @doc(
        _shared_docs["aggregate"],
        see_also=_agg_see_also_doc,
        examples=_agg_examples_doc,
        klass="DataFrame",
        axis="",
    )
    def aggregate(self, func=None, *args, **kwargs):
        result = ResamplerWindowApply(self, func, args=args, kwargs=kwargs).agg()
        if result is None:
            how = func
            result = self._groupby_and_aggregate(how, *args, **kwargs)
 
        return result
 
    agg = aggregate
    apply = aggregate
 
    def transform(self, arg, *args, **kwargs):
        """
        Call function producing a like-indexed Series on each group.
 
        Return a Series with the transformed values.
 
        Parameters
        ----------
        arg : function
            To apply to each group. Should return a Series with the same index.
 
        Returns
        -------
        Series
 
        Examples
        --------
        >>> s = pd.Series([1, 2],
        ...               index=pd.date_range('20180101',
        ...                                   periods=2,
        ...                                   freq='1h'))
        >>> s
        2018-01-01 00:00:00    1
        2018-01-01 01:00:00    2
        Freq: H, dtype: int64
 
        >>> resampled = s.resample('15min')
        >>> resampled.transform(lambda x: (x - x.mean()) / x.std())
        2018-01-01 00:00:00   NaN
        2018-01-01 01:00:00   NaN
        Freq: H, dtype: float64
        """
        return self._selected_obj.groupby(self._timegrouper).transform(
            arg, *args, **kwargs
        )
 
    def _downsample(self, f, **kwargs):
        raise AbstractMethodError(self)
 
    def _upsample(self, f, limit=None, fill_value=None):
        raise AbstractMethodError(self)
 
    def _gotitem(self, key, ndim: int, subset=None):
        """
        Sub-classes to define. Return a sliced object.
 
        Parameters
        ----------
        key : string / list of selections
        ndim : {1, 2}
            requested ndim of result
        subset : object, default None
            subset to act on
        """
        grouper = self.grouper
        if subset is None:
            subset = self.obj
            if key is not None:
                subset = subset[key]
            else:
                # reached via Apply.agg_dict_like with selection=None and ndim=1
                assert subset.ndim == 1
        if ndim == 1:
            assert subset.ndim == 1
 
        grouped = get_groupby(
            subset, by=None, grouper=grouper, axis=self.axis, group_keys=self.group_keys
        )
        return grouped
 
    def _groupby_and_aggregate(self, how, *args, **kwargs):
        """
        Re-evaluate the obj with a groupby aggregation.
        """
        grouper = self.grouper
 
        if self._selected_obj.ndim == 1:
            obj = self._selected_obj
        else:
            # Excludes `on` column when provided
            obj = self._obj_with_exclusions
        grouped = get_groupby(
            obj, by=None, grouper=grouper, axis=self.axis, group_keys=self.group_keys
        )
 
        try:
            if callable(how):
                # TODO: test_resample_apply_with_additional_args fails if we go
                #  through the non-lambda path, not clear that it should.
                func = lambda x: how(x, *args, **kwargs)
                result = grouped.aggregate(func)
            else:
                result = grouped.aggregate(how, *args, **kwargs)
        except (AttributeError, KeyError):
            # we have a non-reducing function; try to evaluate
            # alternatively we want to evaluate only a column of the input
 
            # test_apply_to_one_column_of_df the function being applied references
            #  a DataFrame column, but aggregate_item_by_item operates column-wise
            #  on Series, raising AttributeError or KeyError
            #  (depending on whether the column lookup uses getattr/__getitem__)
            result = grouped.apply(how, *args, **kwargs)
 
        except ValueError as err:
            if "Must produce aggregated value" in str(err):
                # raised in _aggregate_named
                # see test_apply_without_aggregation, test_apply_with_mutated_index
                pass
            else:
                raise
 
            # we have a non-reducing function
            # try to evaluate
            result = grouped.apply(how, *args, **kwargs)
 
        return self._wrap_result(result)
 
    def _get_resampler_for_grouping(self, groupby: GroupBy, key):
        """
        Return the correct class for resampling with groupby.
        """
        return self._resampler_for_grouping(groupby=groupby, key=key, parent=self)
 
    def _wrap_result(self, result):
        """
        Potentially wrap any results.
        """
        # GH 47705
        obj = self.obj
        if (
            isinstance(result, ABCDataFrame)
            and len(result) == 0
            and not isinstance(result.index, PeriodIndex)
        ):
            result = result.set_index(
                _asfreq_compat(obj.index[:0], freq=self.freq), append=True
            )
 
        if isinstance(result, ABCSeries) and self._selection is not None:
            result.name = self._selection
 
        if isinstance(result, ABCSeries) and result.empty:
            # When index is all NaT, result is empty but index is not
            result.index = _asfreq_compat(obj.index[:0], freq=self.freq)
            result.name = getattr(obj, "name", None)
 
        return result
 
    def ffill(self, limit=None):
        """
        Forward fill the values.
 
        Parameters
        ----------
        limit : int, optional
            Limit of how many values to fill.
 
        Returns
        -------
        An upsampled Series.
 
        See Also
        --------
        Series.fillna: Fill NA/NaN values using the specified method.
        DataFrame.fillna: Fill NA/NaN values using the specified method.
        """
        return self._upsample("ffill", limit=limit)
 
    def nearest(self, limit=None):
        """
        Resample by using the nearest value.
 
        When resampling data, missing values may appear (e.g., when the
        resampling frequency is higher than the original frequency).
        The `nearest` method will replace ``NaN`` values that appeared in
        the resampled data with the value from the nearest member of the
        sequence, based on the index value.
        Missing values that existed in the original data will not be modified.
        If `limit` is given, fill only this many values in each direction for
        each of the original values.
 
        Parameters
        ----------
        limit : int, optional
            Limit of how many values to fill.
 
        Returns
        -------
        Series or DataFrame
            An upsampled Series or DataFrame with ``NaN`` values filled with
            their nearest value.
 
        See Also
        --------
        backfill : Backward fill the new missing values in the resampled data.
        pad : Forward fill ``NaN`` values.
 
        Examples
        --------
        >>> s = pd.Series([1, 2],
        ...               index=pd.date_range('20180101',
        ...                                   periods=2,
        ...                                   freq='1h'))
        >>> s
        2018-01-01 00:00:00    1
        2018-01-01 01:00:00    2
        Freq: H, dtype: int64
 
        >>> s.resample('15min').nearest()
        2018-01-01 00:00:00    1
        2018-01-01 00:15:00    1
        2018-01-01 00:30:00    2
        2018-01-01 00:45:00    2
        2018-01-01 01:00:00    2
        Freq: 15T, dtype: int64
 
        Limit the number of upsampled values imputed by the nearest:
 
        >>> s.resample('15min').nearest(limit=1)
        2018-01-01 00:00:00    1.0
        2018-01-01 00:15:00    1.0
        2018-01-01 00:30:00    NaN
        2018-01-01 00:45:00    2.0
        2018-01-01 01:00:00    2.0
        Freq: 15T, dtype: float64
        """
        return self._upsample("nearest", limit=limit)
 
    def bfill(self, limit=None):
        """
        Backward fill the new missing values in the resampled data.
 
        In statistics, imputation is the process of replacing missing data with
        substituted values [1]_. When resampling data, missing values may
        appear (e.g., when the resampling frequency is higher than the original
        frequency). The backward fill will replace NaN values that appeared in
        the resampled data with the next value in the original sequence.
        Missing values that existed in the original data will not be modified.
 
        Parameters
        ----------
        limit : int, optional
            Limit of how many values to fill.
 
        Returns
        -------
        Series, DataFrame
            An upsampled Series or DataFrame with backward filled NaN values.
 
        See Also
        --------
        bfill : Alias of backfill.
        fillna : Fill NaN values using the specified method, which can be
            'backfill'.
        nearest : Fill NaN values with nearest neighbor starting from center.
        ffill : Forward fill NaN values.
        Series.fillna : Fill NaN values in the Series using the
            specified method, which can be 'backfill'.
        DataFrame.fillna : Fill NaN values in the DataFrame using the
            specified method, which can be 'backfill'.
 
        References
        ----------
        .. [1] https://en.wikipedia.org/wiki/Imputation_(statistics)
 
        Examples
        --------
        Resampling a Series:
 
        >>> s = pd.Series([1, 2, 3],
        ...               index=pd.date_range('20180101', periods=3, freq='h'))
        >>> s
        2018-01-01 00:00:00    1
        2018-01-01 01:00:00    2
        2018-01-01 02:00:00    3
        Freq: H, dtype: int64
 
        >>> s.resample('30min').bfill()
        2018-01-01 00:00:00    1
        2018-01-01 00:30:00    2
        2018-01-01 01:00:00    2
        2018-01-01 01:30:00    3
        2018-01-01 02:00:00    3
        Freq: 30T, dtype: int64
 
        >>> s.resample('15min').bfill(limit=2)
        2018-01-01 00:00:00    1.0
        2018-01-01 00:15:00    NaN
        2018-01-01 00:30:00    2.0
        2018-01-01 00:45:00    2.0
        2018-01-01 01:00:00    2.0
        2018-01-01 01:15:00    NaN
        2018-01-01 01:30:00    3.0
        2018-01-01 01:45:00    3.0
        2018-01-01 02:00:00    3.0
        Freq: 15T, dtype: float64
 
        Resampling a DataFrame that has missing values:
 
        >>> df = pd.DataFrame({'a': [2, np.nan, 6], 'b': [1, 3, 5]},
        ...                   index=pd.date_range('20180101', periods=3,
        ...                                       freq='h'))
        >>> df
                               a  b
        2018-01-01 00:00:00  2.0  1
        2018-01-01 01:00:00  NaN  3
        2018-01-01 02:00:00  6.0  5
 
        >>> df.resample('30min').bfill()
                               a  b
        2018-01-01 00:00:00  2.0  1
        2018-01-01 00:30:00  NaN  3
        2018-01-01 01:00:00  NaN  3
        2018-01-01 01:30:00  6.0  5
        2018-01-01 02:00:00  6.0  5
 
        >>> df.resample('15min').bfill(limit=2)
                               a    b
        2018-01-01 00:00:00  2.0  1.0
        2018-01-01 00:15:00  NaN  NaN
        2018-01-01 00:30:00  NaN  3.0
        2018-01-01 00:45:00  NaN  3.0
        2018-01-01 01:00:00  NaN  3.0
        2018-01-01 01:15:00  NaN  NaN
        2018-01-01 01:30:00  6.0  5.0
        2018-01-01 01:45:00  6.0  5.0
        2018-01-01 02:00:00  6.0  5.0
        """
        return self._upsample("bfill", limit=limit)
 
    def fillna(self, method, limit=None):
        """
        Fill missing values introduced by upsampling.
 
        In statistics, imputation is the process of replacing missing data with
        substituted values [1]_. When resampling data, missing values may
        appear (e.g., when the resampling frequency is higher than the original
        frequency).
 
        Missing values that existed in the original data will
        not be modified.
 
        Parameters
        ----------
        method : {'pad', 'backfill', 'ffill', 'bfill', 'nearest'}
            Method to use for filling holes in resampled data
 
            * 'pad' or 'ffill': use previous valid observation to fill gap
              (forward fill).
            * 'backfill' or 'bfill': use next valid observation to fill gap.
            * 'nearest': use nearest valid observation to fill gap.
 
        limit : int, optional
            Limit of how many consecutive missing values to fill.
 
        Returns
        -------
        Series or DataFrame
            An upsampled Series or DataFrame with missing values filled.
 
        See Also
        --------
        bfill : Backward fill NaN values in the resampled data.
        ffill : Forward fill NaN values in the resampled data.
        nearest : Fill NaN values in the resampled data
            with nearest neighbor starting from center.
        interpolate : Fill NaN values using interpolation.
        Series.fillna : Fill NaN values in the Series using the
            specified method, which can be 'bfill' and 'ffill'.
        DataFrame.fillna : Fill NaN values in the DataFrame using the
            specified method, which can be 'bfill' and 'ffill'.
 
        References
        ----------
        .. [1] https://en.wikipedia.org/wiki/Imputation_(statistics)
 
        Examples
        --------
        Resampling a Series:
 
        >>> s = pd.Series([1, 2, 3],
        ...               index=pd.date_range('20180101', periods=3, freq='h'))
        >>> s
        2018-01-01 00:00:00    1
        2018-01-01 01:00:00    2
        2018-01-01 02:00:00    3
        Freq: H, dtype: int64
 
        Without filling the missing values you get:
 
        >>> s.resample("30min").asfreq()
        2018-01-01 00:00:00    1.0
        2018-01-01 00:30:00    NaN
        2018-01-01 01:00:00    2.0
        2018-01-01 01:30:00    NaN
        2018-01-01 02:00:00    3.0
        Freq: 30T, dtype: float64
 
        >>> s.resample('30min').fillna("backfill")
        2018-01-01 00:00:00    1
        2018-01-01 00:30:00    2
        2018-01-01 01:00:00    2
        2018-01-01 01:30:00    3
        2018-01-01 02:00:00    3
        Freq: 30T, dtype: int64
 
        >>> s.resample('15min').fillna("backfill", limit=2)
        2018-01-01 00:00:00    1.0
        2018-01-01 00:15:00    NaN
        2018-01-01 00:30:00    2.0
        2018-01-01 00:45:00    2.0
        2018-01-01 01:00:00    2.0
        2018-01-01 01:15:00    NaN
        2018-01-01 01:30:00    3.0
        2018-01-01 01:45:00    3.0
        2018-01-01 02:00:00    3.0
        Freq: 15T, dtype: float64
 
        >>> s.resample('30min').fillna("pad")
        2018-01-01 00:00:00    1
        2018-01-01 00:30:00    1
        2018-01-01 01:00:00    2
        2018-01-01 01:30:00    2
        2018-01-01 02:00:00    3
        Freq: 30T, dtype: int64
 
        >>> s.resample('30min').fillna("nearest")
        2018-01-01 00:00:00    1
        2018-01-01 00:30:00    2
        2018-01-01 01:00:00    2
        2018-01-01 01:30:00    3
        2018-01-01 02:00:00    3
        Freq: 30T, dtype: int64
 
        Missing values present before the upsampling are not affected.
 
        >>> sm = pd.Series([1, None, 3],
        ...               index=pd.date_range('20180101', periods=3, freq='h'))
        >>> sm
        2018-01-01 00:00:00    1.0
        2018-01-01 01:00:00    NaN
        2018-01-01 02:00:00    3.0
        Freq: H, dtype: float64
 
        >>> sm.resample('30min').fillna('backfill')
        2018-01-01 00:00:00    1.0
        2018-01-01 00:30:00    NaN
        2018-01-01 01:00:00    NaN
        2018-01-01 01:30:00    3.0
        2018-01-01 02:00:00    3.0
        Freq: 30T, dtype: float64
 
        >>> sm.resample('30min').fillna('pad')
        2018-01-01 00:00:00    1.0
        2018-01-01 00:30:00    1.0
        2018-01-01 01:00:00    NaN
        2018-01-01 01:30:00    NaN
        2018-01-01 02:00:00    3.0
        Freq: 30T, dtype: float64
 
        >>> sm.resample('30min').fillna('nearest')
        2018-01-01 00:00:00    1.0
        2018-01-01 00:30:00    NaN
        2018-01-01 01:00:00    NaN
        2018-01-01 01:30:00    3.0
        2018-01-01 02:00:00    3.0
        Freq: 30T, dtype: float64
 
        DataFrame resampling is done column-wise. All the same options are
        available.
 
        >>> df = pd.DataFrame({'a': [2, np.nan, 6], 'b': [1, 3, 5]},
        ...                   index=pd.date_range('20180101', periods=3,
        ...                                       freq='h'))
        >>> df
                               a  b
        2018-01-01 00:00:00  2.0  1
        2018-01-01 01:00:00  NaN  3
        2018-01-01 02:00:00  6.0  5
 
        >>> df.resample('30min').fillna("bfill")
                               a  b
        2018-01-01 00:00:00  2.0  1
        2018-01-01 00:30:00  NaN  3
        2018-01-01 01:00:00  NaN  3
        2018-01-01 01:30:00  6.0  5
        2018-01-01 02:00:00  6.0  5
        """
        return self._upsample(method, limit=limit)
 
    @doc(NDFrame.interpolate, **_shared_docs_kwargs)
    def interpolate(
        self,
        method: QuantileInterpolation = "linear",
        *,
        axis: Axis = 0,
        limit=None,
        inplace: bool = False,
        limit_direction: Literal["forward", "backward", "both"] = "forward",
        limit_area=None,
        downcast=None,
        **kwargs,
    ):
        """
        Interpolate values according to different methods.
        """
        result = self._upsample("asfreq")
        return result.interpolate(
            method=method,
            axis=axis,
            limit=limit,
            inplace=inplace,
            limit_direction=limit_direction,
            limit_area=limit_area,
            downcast=downcast,
            **kwargs,
        )
 
    def asfreq(self, fill_value=None):
        """
        Return the values at the new freq, essentially a reindex.
 
        Parameters
        ----------
        fill_value : scalar, optional
            Value to use for missing values, applied during upsampling (note
            this does not fill NaNs that already were present).
 
        Returns
        -------
        DataFrame or Series
            Values at the specified freq.
 
        See Also
        --------
        Series.asfreq: Convert TimeSeries to specified frequency.
        DataFrame.asfreq: Convert TimeSeries to specified frequency.
        """
        return self._upsample("asfreq", fill_value=fill_value)
 
    def sum(
        self,
        numeric_only: bool = False,
        min_count: int = 0,
        *args,
        **kwargs,
    ):
        maybe_warn_args_and_kwargs(type(self), "sum", args, kwargs)
        nv.validate_resampler_func("sum", args, kwargs)
        return self._downsample("sum", numeric_only=numeric_only, min_count=min_count)
 
    @doc(GroupBy.prod)
    def prod(
        self,
        numeric_only: bool = False,
        min_count: int = 0,
        *args,
        **kwargs,
    ):
        maybe_warn_args_and_kwargs(type(self), "prod", args, kwargs)
        nv.validate_resampler_func("prod", args, kwargs)
        return self._downsample("prod", numeric_only=numeric_only, min_count=min_count)
 
    def min(
        self,
        numeric_only: bool = False,
        min_count: int = 0,
        *args,
        **kwargs,
    ):
        maybe_warn_args_and_kwargs(type(self), "min", args, kwargs)
        nv.validate_resampler_func("min", args, kwargs)
        return self._downsample("min", numeric_only=numeric_only, min_count=min_count)
 
    def max(
        self,
        numeric_only: bool = False,
        min_count: int = 0,
        *args,
        **kwargs,
    ):
        maybe_warn_args_and_kwargs(type(self), "max", args, kwargs)
        nv.validate_resampler_func("max", args, kwargs)
        return self._downsample("max", numeric_only=numeric_only, min_count=min_count)
 
    @doc(GroupBy.first)
    def first(
        self,
        numeric_only: bool = False,
        min_count: int = 0,
        *args,
        **kwargs,
    ):
        maybe_warn_args_and_kwargs(type(self), "first", args, kwargs)
        nv.validate_resampler_func("first", args, kwargs)
        return self._downsample("first", numeric_only=numeric_only, min_count=min_count)
 
    @doc(GroupBy.last)
    def last(
        self,
        numeric_only: bool = False,
        min_count: int = 0,
        *args,
        **kwargs,
    ):
        maybe_warn_args_and_kwargs(type(self), "last", args, kwargs)
        nv.validate_resampler_func("last", args, kwargs)
        return self._downsample("last", numeric_only=numeric_only, min_count=min_count)
 
    @doc(GroupBy.median)
    def median(self, numeric_only: bool = False, *args, **kwargs):
        maybe_warn_args_and_kwargs(type(self), "median", args, kwargs)
        nv.validate_resampler_func("median", args, kwargs)
        return self._downsample("median", numeric_only=numeric_only)
 
    def mean(
        self,
        numeric_only: bool = False,
        *args,
        **kwargs,
    ):
        """
        Compute mean of groups, excluding missing values.
 
        Parameters
        ----------
        numeric_only : bool, default False
            Include only `float`, `int` or `boolean` data.
 
            .. versionchanged:: 2.0.0
 
                numeric_only now defaults to ``False``.
 
        Returns
        -------
        DataFrame or Series
            Mean of values within each group.
        """
        maybe_warn_args_and_kwargs(type(self), "mean", args, kwargs)
        nv.validate_resampler_func("mean", args, kwargs)
        return self._downsample("mean", numeric_only=numeric_only)
 
    def std(
        self,
        ddof: int = 1,
        numeric_only: bool = False,
        *args,
        **kwargs,
    ):
        """
        Compute standard deviation of groups, excluding missing values.
 
        Parameters
        ----------
        ddof : int, default 1
            Degrees of freedom.
        numeric_only : bool, default False
            Include only `float`, `int` or `boolean` data.
 
            .. versionadded:: 1.5.0
 
            .. versionchanged:: 2.0.0
 
                numeric_only now defaults to ``False``.
 
        Returns
        -------
        DataFrame or Series
            Standard deviation of values within each group.
        """
        maybe_warn_args_and_kwargs(type(self), "std", args, kwargs)
        nv.validate_resampler_func("std", args, kwargs)
        return self._downsample("std", ddof=ddof, numeric_only=numeric_only)
 
    def var(
        self,
        ddof: int = 1,
        numeric_only: bool = False,
        *args,
        **kwargs,
    ):
        """
        Compute variance of groups, excluding missing values.
 
        Parameters
        ----------
        ddof : int, default 1
            Degrees of freedom.
 
        numeric_only : bool, default False
            Include only `float`, `int` or `boolean` data.
 
            .. versionadded:: 1.5.0
 
            .. versionchanged:: 2.0.0
 
                numeric_only now defaults to ``False``.
 
        Returns
        -------
        DataFrame or Series
            Variance of values within each group.
        """
        maybe_warn_args_and_kwargs(type(self), "var", args, kwargs)
        nv.validate_resampler_func("var", args, kwargs)
        return self._downsample("var", ddof=ddof, numeric_only=numeric_only)
 
    @doc(GroupBy.sem)
    def sem(
        self,
        ddof: int = 1,
        numeric_only: bool = False,
        *args,
        **kwargs,
    ):
        maybe_warn_args_and_kwargs(type(self), "sem", args, kwargs)
        nv.validate_resampler_func("sem", args, kwargs)
        return self._downsample("sem", ddof=ddof, numeric_only=numeric_only)
 
    @doc(GroupBy.ohlc)
    def ohlc(
        self,
        *args,
        **kwargs,
    ):
        maybe_warn_args_and_kwargs(type(self), "ohlc", args, kwargs)
        nv.validate_resampler_func("ohlc", args, kwargs)
        return self._downsample("ohlc")
 
    @doc(SeriesGroupBy.nunique)
    def nunique(
        self,
        *args,
        **kwargs,
    ):
        maybe_warn_args_and_kwargs(type(self), "nunique", args, kwargs)
        nv.validate_resampler_func("nunique", args, kwargs)
        return self._downsample("nunique")
 
    @doc(GroupBy.size)
    def size(self):
        result = self._downsample("size")
 
        # If the result is a non-empty DataFrame we stack to get a Series
        # GH 46826
        if isinstance(result, ABCDataFrame) and not result.empty:
            result = result.stack()
 
        if not len(self.ax):
            from pandas import Series
 
            if self._selected_obj.ndim == 1:
                name = self._selected_obj.name
            else:
                name = None
            result = Series([], index=result.index, dtype="int64", name=name)
        return result
 
    @doc(GroupBy.count)
    def count(self):
        result = self._downsample("count")
        if not len(self.ax):
            if self._selected_obj.ndim == 1:
                result = type(self._selected_obj)(
                    [], index=result.index, dtype="int64", name=self._selected_obj.name
                )
            else:
                from pandas import DataFrame
 
                result = DataFrame(
                    [], index=result.index, columns=result.columns, dtype="int64"
                )
 
        return result
 
    def quantile(self, q: float | AnyArrayLike = 0.5, **kwargs):
        """
        Return value at the given quantile.
 
        Parameters
        ----------
        q : float or array-like, default 0.5 (50% quantile)
 
        Returns
        -------
        DataFrame or Series
            Quantile of values within each group.
 
        See Also
        --------
        Series.quantile
            Return a series, where the index is q and the values are the quantiles.
        DataFrame.quantile
            Return a DataFrame, where the columns are the columns of self,
            and the values are the quantiles.
        DataFrameGroupBy.quantile
            Return a DataFrame, where the columns are groupby columns,
            and the values are its quantiles.
        """
        return self._downsample("quantile", q=q, **kwargs)
 
 
class _GroupByMixin(PandasObject):
    """
    Provide the groupby facilities.
    """
 
    _attributes: list[str]  # in practice the same as Resampler._attributes
    _selection: IndexLabel | None = None
    _groupby: GroupBy
    _timegrouper: TimeGrouper
 
    def __init__(
        self,
        *,
        parent: Resampler,
        groupby: GroupBy,
        key=None,
        selection: IndexLabel | None = None,
    ) -> None:
        # reached via ._gotitem and _get_resampler_for_grouping
 
        assert isinstance(groupby, GroupBy), type(groupby)
 
        # parent is always a Resampler, sometimes a _GroupByMixin
        assert isinstance(parent, Resampler), type(parent)
 
        # initialize our GroupByMixin object with
        # the resampler attributes
        for attr in self._attributes:
            setattr(self, attr, getattr(parent, attr))
        self._selection = selection
 
        self.binner = parent.binner
        self.key = key
 
        self._groupby = groupby
        self._timegrouper = copy.copy(parent._timegrouper)
 
        self.ax = parent.ax
        self.obj = parent.obj
 
    @no_type_check
    def _apply(self, f, *args, **kwargs):
        """
        Dispatch to _upsample; we are stripping all of the _upsample kwargs and
        performing the original function call on the grouped object.
        """
 
        def func(x):
            x = self._resampler_cls(x, timegrouper=self._timegrouper, gpr_index=self.ax)
 
            if isinstance(f, str):
                return getattr(x, f)(**kwargs)
 
            return x.apply(f, *args, **kwargs)
 
        result = self._groupby.apply(func)
        return self._wrap_result(result)
 
    _upsample = _apply
    _downsample = _apply
    _groupby_and_aggregate = _apply
 
    @final
    def _gotitem(self, key, ndim, subset=None):
        """
        Sub-classes to define. Return a sliced object.
 
        Parameters
        ----------
        key : string / list of selections
        ndim : {1, 2}
            requested ndim of result
        subset : object, default None
            subset to act on
        """
        # create a new object to prevent aliasing
        if subset is None:
            subset = self.obj
            if key is not None:
                subset = subset[key]
            else:
                # reached via Apply.agg_dict_like with selection=None, ndim=1
                assert subset.ndim == 1
 
        # Try to select from a DataFrame, falling back to a Series
        try:
            if isinstance(key, list) and self.key not in key and self.key is not None:
                key.append(self.key)
            groupby = self._groupby[key]
        except IndexError:
            groupby = self._groupby
 
        selection = None
        if subset.ndim == 2 and (
            (lib.is_scalar(key) and key in subset) or lib.is_list_like(key)
        ):
            selection = key
        elif subset.ndim == 1 and lib.is_scalar(key) and key == subset.name:
            selection = key
 
        new_rs = type(self)(
            groupby=groupby,
            parent=cast(Resampler, self),
            selection=selection,
        )
        return new_rs
 
 
class DatetimeIndexResampler(Resampler):
    @property
    def _resampler_for_grouping(self):
        return DatetimeIndexResamplerGroupby
 
    def _get_binner_for_time(self):
        # this is how we are actually creating the bins
        if self.kind == "period":
            return self._timegrouper._get_time_period_bins(self.ax)
        return self._timegrouper._get_time_bins(self.ax)
 
    def _downsample(self, how, **kwargs):
        """
        Downsample the cython defined function.
 
        Parameters
        ----------
        how : string / cython mapped function
        **kwargs : kw args passed to how function
        """
        how = com.get_cython_func(how) or how
        ax = self.ax
        if self._selected_obj.ndim == 1:
            obj = self._selected_obj
        else:
            # Excludes `on` column when provided
            obj = self._obj_with_exclusions
 
        if not len(ax):
            # reset to the new freq
            obj = obj.copy()
            obj.index = obj.index._with_freq(self.freq)
            assert obj.index.freq == self.freq, (obj.index.freq, self.freq)
            return obj
 
        # do we have a regular frequency
 
        # error: Item "None" of "Optional[Any]" has no attribute "binlabels"
        if (
            (ax.freq is not None or ax.inferred_freq is not None)
            and len(self.grouper.binlabels) > len(ax)
            and how is None
        ):
            # let's do an asfreq
            return self.asfreq()
 
        # we are downsampling
        # we want to call the actual grouper method here
        result = obj.groupby(self.grouper, axis=self.axis).aggregate(how, **kwargs)
 
        return self._wrap_result(result)
 
    def _adjust_binner_for_upsample(self, binner):
        """
        Adjust our binner when upsampling.
 
        The range of a new index should not be outside specified range
        """
        if self.closed == "right":
            binner = binner[1:]
        else:
            binner = binner[:-1]
        return binner
 
    def _upsample(self, method, limit=None, fill_value=None):
        """
        Parameters
        ----------
        method : string {'backfill', 'bfill', 'pad',
            'ffill', 'asfreq'} method for upsampling
        limit : int, default None
            Maximum size gap to fill when reindexing
        fill_value : scalar, default None
            Value to use for missing values
 
        See Also
        --------
        .fillna: Fill NA/NaN values using the specified method.
 
        """
        if self.axis:
            raise AssertionError("axis must be 0")
        if self._from_selection:
            raise ValueError(
                "Upsampling from level= or on= selection "
                "is not supported, use .set_index(...) "
                "to explicitly set index to datetime-like"
            )
 
        ax = self.ax
        obj = self._selected_obj
        binner = self.binner
        res_index = self._adjust_binner_for_upsample(binner)
 
        # if we have the same frequency as our axis, then we are equal sampling
        if (
            limit is None
            and to_offset(ax.inferred_freq) == self.freq
            and len(obj) == len(res_index)
        ):
            result = obj.copy()
            result.index = res_index
        else:
            result = obj.reindex(
                res_index, method=method, limit=limit, fill_value=fill_value
            )
 
        return self._wrap_result(result)
 
    def _wrap_result(self, result):
        result = super()._wrap_result(result)
 
        # we may have a different kind that we were asked originally
        # convert if needed
        if self.kind == "period" and not isinstance(result.index, PeriodIndex):
            result.index = result.index.to_period(self.freq)
        return result
 
 
class DatetimeIndexResamplerGroupby(_GroupByMixin, DatetimeIndexResampler):
    """
    Provides a resample of a groupby implementation
    """
 
    @property
    def _resampler_cls(self):
        return DatetimeIndexResampler
 
 
class PeriodIndexResampler(DatetimeIndexResampler):
    @property
    def _resampler_for_grouping(self):
        return PeriodIndexResamplerGroupby
 
    def _get_binner_for_time(self):
        if self.kind == "timestamp":
            return super()._get_binner_for_time()
        return self._timegrouper._get_period_bins(self.ax)
 
    def _convert_obj(self, obj: NDFrameT) -> NDFrameT:
        obj = super()._convert_obj(obj)
 
        if self._from_selection:
            # see GH 14008, GH 12871
            msg = (
                "Resampling from level= or on= selection "
                "with a PeriodIndex is not currently supported, "
                "use .set_index(...) to explicitly set index"
            )
            raise NotImplementedError(msg)
 
        # convert to timestamp
        if self.kind == "timestamp":
            obj = obj.to_timestamp(how=self.convention)
 
        return obj
 
    def _downsample(self, how, **kwargs):
        """
        Downsample the cython defined function.
 
        Parameters
        ----------
        how : string / cython mapped function
        **kwargs : kw args passed to how function
        """
        # we may need to actually resample as if we are timestamps
        if self.kind == "timestamp":
            return super()._downsample(how, **kwargs)
 
        how = com.get_cython_func(how) or how
        ax = self.ax
 
        if is_subperiod(ax.freq, self.freq):
            # Downsampling
            return self._groupby_and_aggregate(how, **kwargs)
        elif is_superperiod(ax.freq, self.freq):
            if how == "ohlc":
                # GH #13083
                # upsampling to subperiods is handled as an asfreq, which works
                # for pure aggregating/reducing methods
                # OHLC reduces along the time dimension, but creates multiple
                # values for each period -> handle by _groupby_and_aggregate()
                return self._groupby_and_aggregate(how)
            return self.asfreq()
        elif ax.freq == self.freq:
            return self.asfreq()
 
        raise IncompatibleFrequency(
            f"Frequency {ax.freq} cannot be resampled to {self.freq}, "
            "as they are not sub or super periods"
        )
 
    def _upsample(self, method, limit=None, fill_value=None):
        """
        Parameters
        ----------
        method : {'backfill', 'bfill', 'pad', 'ffill'}
            Method for upsampling.
        limit : int, default None
            Maximum size gap to fill when reindexing.
        fill_value : scalar, default None
            Value to use for missing values.
 
        See Also
        --------
        .fillna: Fill NA/NaN values using the specified method.
 
        """
        # we may need to actually resample as if we are timestamps
        if self.kind == "timestamp":
            return super()._upsample(method, limit=limit, fill_value=fill_value)
 
        ax = self.ax
        obj = self.obj
        new_index = self.binner
 
        # Start vs. end of period
        memb = ax.asfreq(self.freq, how=self.convention)
 
        # Get the fill indexer
        indexer = memb.get_indexer(new_index, method=method, limit=limit)
        new_obj = _take_new_index(
            obj,
            indexer,
            new_index,
            axis=self.axis,
        )
        return self._wrap_result(new_obj)
 
 
class PeriodIndexResamplerGroupby(_GroupByMixin, PeriodIndexResampler):
    """
    Provides a resample of a groupby implementation.
    """
 
    @property
    def _resampler_cls(self):
        return PeriodIndexResampler
 
 
class TimedeltaIndexResampler(DatetimeIndexResampler):
    @property
    def _resampler_for_grouping(self):
        return TimedeltaIndexResamplerGroupby
 
    def _get_binner_for_time(self):
        return self._timegrouper._get_time_delta_bins(self.ax)
 
    def _adjust_binner_for_upsample(self, binner):
        """
        Adjust our binner when upsampling.
 
        The range of a new index is allowed to be greater than original range
        so we don't need to change the length of a binner, GH 13022
        """
        return binner
 
 
class TimedeltaIndexResamplerGroupby(_GroupByMixin, TimedeltaIndexResampler):
    """
    Provides a resample of a groupby implementation.
    """
 
    @property
    def _resampler_cls(self):
        return TimedeltaIndexResampler
 
 
def get_resampler(obj: Series | DataFrame, kind=None, **kwds) -> Resampler:
    """
    Create a TimeGrouper and return our resampler.
    """
    tg = TimeGrouper(**kwds)
    return tg._get_resampler(obj, kind=kind)
 
 
get_resampler.__doc__ = Resampler.__doc__
 
 
def get_resampler_for_grouping(
    groupby: GroupBy,
    rule,
    how=None,
    fill_method=None,
    limit=None,
    kind=None,
    on=None,
    **kwargs,
) -> Resampler:
    """
    Return our appropriate resampler when grouping as well.
    """
    # .resample uses 'on' similar to how .groupby uses 'key'
    tg = TimeGrouper(freq=rule, key=on, **kwargs)
    resampler = tg._get_resampler(groupby.obj, kind=kind)
    return resampler._get_resampler_for_grouping(groupby=groupby, key=tg.key)
 
 
class TimeGrouper(Grouper):
    """
    Custom groupby class for time-interval grouping.
 
    Parameters
    ----------
    freq : pandas date offset or offset alias for identifying bin edges
    closed : closed end of interval; 'left' or 'right'
    label : interval boundary to use for labeling; 'left' or 'right'
    convention : {'start', 'end', 'e', 's'}
        If axis is PeriodIndex
    """
 
    _attributes = Grouper._attributes + (
        "closed",
        "label",
        "how",
        "kind",
        "convention",
        "origin",
        "offset",
    )
 
    origin: TimeGrouperOrigin
 
    def __init__(
        self,
        freq: Frequency = "Min",
        closed: Literal["left", "right"] | None = None,
        label: Literal["left", "right"] | None = None,
        how: str = "mean",
        axis: Axis = 0,
        fill_method=None,
        limit=None,
        kind: str | None = None,
        convention: Literal["start", "end", "e", "s"] | None = None,
        origin: Literal["epoch", "start", "start_day", "end", "end_day"]
        | TimestampConvertibleTypes = "start_day",
        offset: TimedeltaConvertibleTypes | None = None,
        group_keys: bool = False,
        **kwargs,
    ) -> None:
        # Check for correctness of the keyword arguments which would
        # otherwise silently use the default if misspelled
        if label not in {None, "left", "right"}:
            raise ValueError(f"Unsupported value {label} for `label`")
        if closed not in {None, "left", "right"}:
            raise ValueError(f"Unsupported value {closed} for `closed`")
        if convention not in {None, "start", "end", "e", "s"}:
            raise ValueError(f"Unsupported value {convention} for `convention`")
 
        freq = to_offset(freq)
 
        end_types = {"M", "A", "Q", "BM", "BA", "BQ", "W"}
        rule = freq.rule_code
        if rule in end_types or ("-" in rule and rule[: rule.find("-")] in end_types):
            if closed is None:
                closed = "right"
            if label is None:
                label = "right"
        else:
            # The backward resample sets ``closed`` to ``'right'`` by default
            # since the last value should be considered as the edge point for
            # the last bin. When origin in "end" or "end_day", the value for a
            # specific ``Timestamp`` index stands for the resample result from
            # the current ``Timestamp`` minus ``freq`` to the current
            # ``Timestamp`` with a right close.
            if origin in ["end", "end_day"]:
                if closed is None:
                    closed = "right"
                if label is None:
                    label = "right"
            else:
                if closed is None:
                    closed = "left"
                if label is None:
                    label = "left"
 
        self.closed = closed
        self.label = label
        self.kind = kind
        self.convention = convention if convention is not None else "e"
        self.how = how
        self.fill_method = fill_method
        self.limit = limit
        self.group_keys = group_keys
 
        if origin in ("epoch", "start", "start_day", "end", "end_day"):
            # error: Incompatible types in assignment (expression has type "Union[Union[
            # Timestamp, datetime, datetime64, signedinteger[_64Bit], float, str],
            # Literal['epoch', 'start', 'start_day', 'end', 'end_day']]", variable has
            # type "Union[Timestamp, Literal['epoch', 'start', 'start_day', 'end',
            # 'end_day']]")
            self.origin = origin  # type: ignore[assignment]
        else:
            try:
                self.origin = Timestamp(origin)
            except (ValueError, TypeError) as err:
                raise ValueError(
                    "'origin' should be equal to 'epoch', 'start', 'start_day', "
                    "'end', 'end_day' or "
                    f"should be a Timestamp convertible type. Got '{origin}' instead."
                ) from err
 
        try:
            self.offset = Timedelta(offset) if offset is not None else None
        except (ValueError, TypeError) as err:
            raise ValueError(
                "'offset' should be a Timedelta convertible type. "
                f"Got '{offset}' instead."
            ) from err
 
        # always sort time groupers
        kwargs["sort"] = True
 
        super().__init__(freq=freq, axis=axis, **kwargs)
 
    def _get_resampler(self, obj: NDFrame, kind=None) -> Resampler:
        """
        Return my resampler or raise if we have an invalid axis.
 
        Parameters
        ----------
        obj : Series or DataFrame
        kind : string, optional
            'period','timestamp','timedelta' are valid
 
        Returns
        -------
        Resampler
 
        Raises
        ------
        TypeError if incompatible axis
 
        """
        _, ax, indexer = self._set_grouper(obj, gpr_index=None)
 
        if isinstance(ax, DatetimeIndex):
            return DatetimeIndexResampler(
                obj,
                timegrouper=self,
                kind=kind,
                axis=self.axis,
                group_keys=self.group_keys,
                gpr_index=ax,
            )
        elif isinstance(ax, PeriodIndex) or kind == "period":
            return PeriodIndexResampler(
                obj,
                timegrouper=self,
                kind=kind,
                axis=self.axis,
                group_keys=self.group_keys,
                gpr_index=ax,
            )
        elif isinstance(ax, TimedeltaIndex):
            return TimedeltaIndexResampler(
                obj,
                timegrouper=self,
                axis=self.axis,
                group_keys=self.group_keys,
                gpr_index=ax,
            )
 
        raise TypeError(
            "Only valid with DatetimeIndex, "
            "TimedeltaIndex or PeriodIndex, "
            f"but got an instance of '{type(ax).__name__}'"
        )
 
    def _get_grouper(
        self, obj: NDFrameT, validate: bool = True
    ) -> tuple[BinGrouper, NDFrameT]:
        # create the resampler and return our binner
        r = self._get_resampler(obj)
        return r.grouper, cast(NDFrameT, r.obj)
 
    def _get_time_bins(self, ax: DatetimeIndex):
        if not isinstance(ax, DatetimeIndex):
            raise TypeError(
                "axis must be a DatetimeIndex, but got "
                f"an instance of {type(ax).__name__}"
            )
 
        if len(ax) == 0:
            binner = labels = DatetimeIndex(data=[], freq=self.freq, name=ax.name)
            return binner, [], labels
 
        first, last = _get_timestamp_range_edges(
            ax.min(),
            ax.max(),
            self.freq,
            unit=ax.unit,
            closed=self.closed,
            origin=self.origin,
            offset=self.offset,
        )
        # GH #12037
        # use first/last directly instead of call replace() on them
        # because replace() will swallow the nanosecond part
        # thus last bin maybe slightly before the end if the end contains
        # nanosecond part and lead to `Values falls after last bin` error
        # GH 25758: If DST lands at midnight (e.g. 'America/Havana'), user feedback
        # has noted that ambiguous=True provides the most sensible result
        binner = labels = date_range(
            freq=self.freq,
            start=first,
            end=last,
            tz=ax.tz,
            name=ax.name,
            ambiguous=True,
            nonexistent="shift_forward",
            unit=ax.unit,
        )
 
        ax_values = ax.asi8
        binner, bin_edges = self._adjust_bin_edges(binner, ax_values)
 
        # general version, knowing nothing about relative frequencies
        bins = lib.generate_bins_dt64(
            ax_values, bin_edges, self.closed, hasnans=ax.hasnans
        )
 
        if self.closed == "right":
            labels = binner
            if self.label == "right":
                labels = labels[1:]
        elif self.label == "right":
            labels = labels[1:]
 
        if ax.hasnans:
            binner = binner.insert(0, NaT)
            labels = labels.insert(0, NaT)
 
        # if we end up with more labels than bins
        # adjust the labels
        # GH4076
        if len(bins) < len(labels):
            labels = labels[: len(bins)]
 
        return binner, bins, labels
 
    def _adjust_bin_edges(
        self, binner: DatetimeIndex, ax_values: npt.NDArray[np.int64]
    ) -> tuple[DatetimeIndex, npt.NDArray[np.int64]]:
        # Some hacks for > daily data, see #1471, #1458, #1483
 
        if self.freq != "D" and is_superperiod(self.freq, "D"):
            if self.closed == "right":
                # GH 21459, GH 9119: Adjust the bins relative to the wall time
                edges_dti = binner.tz_localize(None)
                edges_dti = (
                    edges_dti
                    + Timedelta(days=1, unit=edges_dti.unit).as_unit(edges_dti.unit)
                    - Timedelta(1, unit=edges_dti.unit).as_unit(edges_dti.unit)
                )
                bin_edges = edges_dti.tz_localize(binner.tz).asi8
            else:
                bin_edges = binner.asi8
 
            # intraday values on last day
            if bin_edges[-2] > ax_values.max():
                bin_edges = bin_edges[:-1]
                binner = binner[:-1]
        else:
            bin_edges = binner.asi8
        return binner, bin_edges
 
    def _get_time_delta_bins(self, ax: TimedeltaIndex):
        if not isinstance(ax, TimedeltaIndex):
            raise TypeError(
                "axis must be a TimedeltaIndex, but got "
                f"an instance of {type(ax).__name__}"
            )
 
        if not len(ax):
            binner = labels = TimedeltaIndex(data=[], freq=self.freq, name=ax.name)
            return binner, [], labels
 
        start, end = ax.min(), ax.max()
 
        if self.closed == "right":
            end += self.freq
 
        labels = binner = timedelta_range(
            start=start, end=end, freq=self.freq, name=ax.name
        )
 
        end_stamps = labels
        if self.closed == "left":
            end_stamps += self.freq
 
        bins = ax.searchsorted(end_stamps, side=self.closed)
 
        if self.offset:
            # GH 10530 & 31809
            labels += self.offset
 
        return binner, bins, labels
 
    def _get_time_period_bins(self, ax: DatetimeIndex):
        if not isinstance(ax, DatetimeIndex):
            raise TypeError(
                "axis must be a DatetimeIndex, but got "
                f"an instance of {type(ax).__name__}"
            )
 
        freq = self.freq
 
        if not len(ax):
            binner = labels = PeriodIndex(data=[], freq=freq, name=ax.name)
            return binner, [], labels
 
        labels = binner = period_range(start=ax[0], end=ax[-1], freq=freq, name=ax.name)
 
        end_stamps = (labels + freq).asfreq(freq, "s").to_timestamp()
        if ax.tz:
            end_stamps = end_stamps.tz_localize(ax.tz)
        bins = ax.searchsorted(end_stamps, side="left")
 
        return binner, bins, labels
 
    def _get_period_bins(self, ax: PeriodIndex):
        if not isinstance(ax, PeriodIndex):
            raise TypeError(
                "axis must be a PeriodIndex, but got "
                f"an instance of {type(ax).__name__}"
            )
 
        memb = ax.asfreq(self.freq, how=self.convention)
 
        # NaT handling as in pandas._lib.lib.generate_bins_dt64()
        nat_count = 0
        if memb.hasnans:
            # error: Incompatible types in assignment (expression has type
            # "bool_", variable has type "int")  [assignment]
            nat_count = np.sum(memb._isnan)  # type: ignore[assignment]
            memb = memb[~memb._isnan]
 
        if not len(memb):
            # index contains no valid (non-NaT) values
            bins = np.array([], dtype=np.int64)
            binner = labels = PeriodIndex(data=[], freq=self.freq, name=ax.name)
            if len(ax) > 0:
                # index is all NaT
                binner, bins, labels = _insert_nat_bin(binner, bins, labels, len(ax))
            return binner, bins, labels
 
        freq_mult = self.freq.n
 
        start = ax.min().asfreq(self.freq, how=self.convention)
        end = ax.max().asfreq(self.freq, how="end")
        bin_shift = 0
 
        if isinstance(self.freq, Tick):
            # GH 23882 & 31809: get adjusted bin edge labels with 'origin'
            # and 'origin' support. This call only makes sense if the freq is a
            # Tick since offset and origin are only used in those cases.
            # Not doing this check could create an extra empty bin.
            p_start, end = _get_period_range_edges(
                start,
                end,
                self.freq,
                closed=self.closed,
                origin=self.origin,
                offset=self.offset,
            )
 
            # Get offset for bin edge (not label edge) adjustment
            start_offset = Period(start, self.freq) - Period(p_start, self.freq)
            # error: Item "Period" of "Union[Period, Any]" has no attribute "n"
            bin_shift = start_offset.n % freq_mult  # type: ignore[union-attr]
            start = p_start
 
        labels = binner = period_range(
            start=start, end=end, freq=self.freq, name=ax.name
        )
 
        i8 = memb.asi8
 
        # when upsampling to subperiods, we need to generate enough bins
        expected_bins_count = len(binner) * freq_mult
        i8_extend = expected_bins_count - (i8[-1] - i8[0])
        rng = np.arange(i8[0], i8[-1] + i8_extend, freq_mult)
        rng += freq_mult
        # adjust bin edge indexes to account for base
        rng -= bin_shift
 
        # Wrap in PeriodArray for PeriodArray.searchsorted
        prng = type(memb._data)(rng, dtype=memb.dtype)
        bins = memb.searchsorted(prng, side="left")
 
        if nat_count > 0:
            binner, bins, labels = _insert_nat_bin(binner, bins, labels, nat_count)
 
        return binner, bins, labels
 
 
def _take_new_index(
    obj: NDFrameT, indexer: npt.NDArray[np.intp], new_index: Index, axis: AxisInt = 0
) -> NDFrameT:
    if isinstance(obj, ABCSeries):
        new_values = algos.take_nd(obj._values, indexer)
        # error: Incompatible return value type (got "Series", expected "NDFrameT")
        return obj._constructor(  # type: ignore[return-value]
            new_values, index=new_index, name=obj.name
        )
    elif isinstance(obj, ABCDataFrame):
        if axis == 1:
            raise NotImplementedError("axis 1 is not supported")
        new_mgr = obj._mgr.reindex_indexer(new_axis=new_index, indexer=indexer, axis=1)
        # error: Incompatible return value type
        # (got "DataFrame", expected "NDFrameT")
        return obj._constructor(new_mgr)  # type: ignore[return-value]
    else:
        raise ValueError("'obj' should be either a Series or a DataFrame")
 
 
def _get_timestamp_range_edges(
    first: Timestamp,
    last: Timestamp,
    freq: BaseOffset,
    unit: str,
    closed: Literal["right", "left"] = "left",
    origin: TimeGrouperOrigin = "start_day",
    offset: Timedelta | None = None,
) -> tuple[Timestamp, Timestamp]:
    """
    Adjust the `first` Timestamp to the preceding Timestamp that resides on
    the provided offset. Adjust the `last` Timestamp to the following
    Timestamp that resides on the provided offset. Input Timestamps that
    already reside on the offset will be adjusted depending on the type of
    offset and the `closed` parameter.
 
    Parameters
    ----------
    first : pd.Timestamp
        The beginning Timestamp of the range to be adjusted.
    last : pd.Timestamp
        The ending Timestamp of the range to be adjusted.
    freq : pd.DateOffset
        The dateoffset to which the Timestamps will be adjusted.
    closed : {'right', 'left'}, default "left"
        Which side of bin interval is closed.
    origin : {'epoch', 'start', 'start_day'} or Timestamp, default 'start_day'
        The timestamp on which to adjust the grouping. The timezone of origin must
        match the timezone of the index.
        If a timestamp is not used, these values are also supported:
 
        - 'epoch': `origin` is 1970-01-01
        - 'start': `origin` is the first value of the timeseries
        - 'start_day': `origin` is the first day at midnight of the timeseries
    offset : pd.Timedelta, default is None
        An offset timedelta added to the origin.
 
    Returns
    -------
    A tuple of length 2, containing the adjusted pd.Timestamp objects.
    """
    if isinstance(freq, Tick):
        index_tz = first.tz
        if isinstance(origin, Timestamp) and (origin.tz is None) != (index_tz is None):
            raise ValueError("The origin must have the same timezone as the index.")
        if origin == "epoch":
            # set the epoch based on the timezone to have similar bins results when
            # resampling on the same kind of indexes on different timezones
            origin = Timestamp("1970-01-01", tz=index_tz)
 
        if isinstance(freq, Day):
            # _adjust_dates_anchored assumes 'D' means 24H, but first/last
            # might contain a DST transition (23H, 24H, or 25H).
            # So "pretend" the dates are naive when adjusting the endpoints
            first = first.tz_localize(None)
            last = last.tz_localize(None)
            if isinstance(origin, Timestamp):
                origin = origin.tz_localize(None)
 
        first, last = _adjust_dates_anchored(
            first, last, freq, closed=closed, origin=origin, offset=offset, unit=unit
        )
        if isinstance(freq, Day):
            first = first.tz_localize(index_tz)
            last = last.tz_localize(index_tz)
    else:
        first = first.normalize()
        last = last.normalize()
 
        if closed == "left":
            first = Timestamp(freq.rollback(first))
        else:
            first = Timestamp(first - freq)
 
        last = Timestamp(last + freq)
 
    return first, last
 
 
def _get_period_range_edges(
    first: Period,
    last: Period,
    freq: BaseOffset,
    closed: Literal["right", "left"] = "left",
    origin: TimeGrouperOrigin = "start_day",
    offset: Timedelta | None = None,
) -> tuple[Period, Period]:
    """
    Adjust the provided `first` and `last` Periods to the respective Period of
    the given offset that encompasses them.
 
    Parameters
    ----------
    first : pd.Period
        The beginning Period of the range to be adjusted.
    last : pd.Period
        The ending Period of the range to be adjusted.
    freq : pd.DateOffset
        The freq to which the Periods will be adjusted.
    closed : {'right', 'left'}, default "left"
        Which side of bin interval is closed.
    origin : {'epoch', 'start', 'start_day'}, Timestamp, default 'start_day'
        The timestamp on which to adjust the grouping. The timezone of origin must
        match the timezone of the index.
 
        If a timestamp is not used, these values are also supported:
 
        - 'epoch': `origin` is 1970-01-01
        - 'start': `origin` is the first value of the timeseries
        - 'start_day': `origin` is the first day at midnight of the timeseries
    offset : pd.Timedelta, default is None
        An offset timedelta added to the origin.
 
    Returns
    -------
    A tuple of length 2, containing the adjusted pd.Period objects.
    """
    if not all(isinstance(obj, Period) for obj in [first, last]):
        raise TypeError("'first' and 'last' must be instances of type Period")
 
    # GH 23882
    first_ts = first.to_timestamp()
    last_ts = last.to_timestamp()
    adjust_first = not freq.is_on_offset(first_ts)
    adjust_last = freq.is_on_offset(last_ts)
 
    first_ts, last_ts = _get_timestamp_range_edges(
        first_ts, last_ts, freq, unit="ns", closed=closed, origin=origin, offset=offset
    )
 
    first = (first_ts + int(adjust_first) * freq).to_period(freq)
    last = (last_ts - int(adjust_last) * freq).to_period(freq)
    return first, last
 
 
def _insert_nat_bin(
    binner: PeriodIndex, bins: np.ndarray, labels: PeriodIndex, nat_count: int
) -> tuple[PeriodIndex, np.ndarray, PeriodIndex]:
    # NaT handling as in pandas._lib.lib.generate_bins_dt64()
    # shift bins by the number of NaT
    assert nat_count > 0
    bins += nat_count
    bins = np.insert(bins, 0, nat_count)
 
    # Incompatible types in assignment (expression has type "Index", variable
    # has type "PeriodIndex")
    binner = binner.insert(0, NaT)  # type: ignore[assignment]
    # Incompatible types in assignment (expression has type "Index", variable
    # has type "PeriodIndex")
    labels = labels.insert(0, NaT)  # type: ignore[assignment]
    return binner, bins, labels
 
 
def _adjust_dates_anchored(
    first: Timestamp,
    last: Timestamp,
    freq: Tick,
    closed: Literal["right", "left"] = "right",
    origin: TimeGrouperOrigin = "start_day",
    offset: Timedelta | None = None,
    unit: str = "ns",
) -> tuple[Timestamp, Timestamp]:
    # First and last offsets should be calculated from the start day to fix an
    # error cause by resampling across multiple days when a one day period is
    # not a multiple of the frequency. See GH 8683
    # To handle frequencies that are not multiple or divisible by a day we let
    # the possibility to define a fixed origin timestamp. See GH 31809
    first = first.as_unit(unit)
    last = last.as_unit(unit)
    if offset is not None:
        offset = offset.as_unit(unit)
 
    freq_value = Timedelta(freq).as_unit(unit)._value
 
    origin_timestamp = 0  # origin == "epoch"
    if origin == "start_day":
        origin_timestamp = first.normalize()._value
    elif origin == "start":
        origin_timestamp = first._value
    elif isinstance(origin, Timestamp):
        origin_timestamp = origin.as_unit(unit)._value
    elif origin in ["end", "end_day"]:
        origin_last = last if origin == "end" else last.ceil("D")
        sub_freq_times = (origin_last._value - first._value) // freq_value
        if closed == "left":
            sub_freq_times += 1
        first = origin_last - sub_freq_times * freq
        origin_timestamp = first._value
    origin_timestamp += offset._value if offset else 0
 
    # GH 10117 & GH 19375. If first and last contain timezone information,
    # Perform the calculation in UTC in order to avoid localizing on an
    # Ambiguous or Nonexistent time.
    first_tzinfo = first.tzinfo
    last_tzinfo = last.tzinfo
    if first_tzinfo is not None:
        first = first.tz_convert("UTC")
    if last_tzinfo is not None:
        last = last.tz_convert("UTC")
 
    foffset = (first._value - origin_timestamp) % freq_value
    loffset = (last._value - origin_timestamp) % freq_value
 
    if closed == "right":
        if foffset > 0:
            # roll back
            fresult_int = first._value - foffset
        else:
            fresult_int = first._value - freq_value
 
        if loffset > 0:
            # roll forward
            lresult_int = last._value + (freq_value - loffset)
        else:
            # already the end of the road
            lresult_int = last._value
    else:  # closed == 'left'
        if foffset > 0:
            fresult_int = first._value - foffset
        else:
            # start of the road
            fresult_int = first._value
 
        if loffset > 0:
            # roll forward
            lresult_int = last._value + (freq_value - loffset)
        else:
            lresult_int = last._value + freq_value
    fresult = Timestamp(fresult_int, unit=unit)
    lresult = Timestamp(lresult_int, unit=unit)
    if first_tzinfo is not None:
        fresult = fresult.tz_localize("UTC").tz_convert(first_tzinfo)
    if last_tzinfo is not None:
        lresult = lresult.tz_localize("UTC").tz_convert(last_tzinfo)
    return fresult, lresult
 
 
def asfreq(
    obj: NDFrameT,
    freq,
    method=None,
    how=None,
    normalize: bool = False,
    fill_value=None,
) -> NDFrameT:
    """
    Utility frequency conversion method for Series/DataFrame.
 
    See :meth:`pandas.NDFrame.asfreq` for full documentation.
    """
    if isinstance(obj.index, PeriodIndex):
        if method is not None:
            raise NotImplementedError("'method' argument is not supported")
 
        if how is None:
            how = "E"
 
        new_obj = obj.copy()
        new_obj.index = obj.index.asfreq(freq, how=how)
 
    elif len(obj.index) == 0:
        new_obj = obj.copy()
 
        new_obj.index = _asfreq_compat(obj.index, freq)
    else:
        dti = date_range(obj.index.min(), obj.index.max(), freq=freq)
        dti.name = obj.index.name
        new_obj = obj.reindex(dti, method=method, fill_value=fill_value)
        if normalize:
            new_obj.index = new_obj.index.normalize()
 
    return new_obj
 
 
def _asfreq_compat(index: DatetimeIndex | PeriodIndex | TimedeltaIndex, freq):
    """
    Helper to mimic asfreq on (empty) DatetimeIndex and TimedeltaIndex.
 
    Parameters
    ----------
    index : PeriodIndex, DatetimeIndex, or TimedeltaIndex
    freq : DateOffset
 
    Returns
    -------
    same type as index
    """
    if len(index) != 0:
        # This should never be reached, always checked by the caller
        raise ValueError(
            "Can only set arbitrary freq for empty DatetimeIndex or TimedeltaIndex"
        )
    new_index: Index
    if isinstance(index, PeriodIndex):
        new_index = index.asfreq(freq=freq)
    elif isinstance(index, DatetimeIndex):
        new_index = DatetimeIndex([], dtype=index.dtype, freq=freq, name=index.name)
    elif isinstance(index, TimedeltaIndex):
        new_index = TimedeltaIndex([], dtype=index.dtype, freq=freq, name=index.name)
    else:  # pragma: no cover
        raise TypeError(type(index))
    return new_index
 
 
def maybe_warn_args_and_kwargs(cls, kernel: str, args, kwargs) -> None:
    """
    Warn for deprecation of args and kwargs in resample functions.
 
    Parameters
    ----------
    cls : type
        Class to warn about.
    kernel : str
        Operation name.
    args : tuple or None
        args passed by user. Will be None if and only if kernel does not have args.
    kwargs : dict or None
        kwargs passed by user. Will be None if and only if kernel does not have kwargs.
    """
    warn_args = args is not None and len(args) > 0
    warn_kwargs = kwargs is not None and len(kwargs) > 0
    if warn_args and warn_kwargs:
        msg = "args and kwargs"
    elif warn_args:
        msg = "args"
    elif warn_kwargs:
        msg = "kwargs"
    else:
        return
    warnings.warn(
        f"Passing additional {msg} to {cls.__name__}.{kernel} has "
        "no impact on the result and is deprecated. This will "
        "raise a TypeError in a future version of pandas.",
        category=FutureWarning,
        stacklevel=find_stack_level(),
    )