zmc
2023-12-22 9fdbf60165db0400c2e8e6be2dc6e88138ac719a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
from __future__ import annotations
 
from functools import wraps
from typing import (
    TYPE_CHECKING,
    Any,
    Literal,
    Sequence,
    TypeVar,
    cast,
    overload,
)
 
import numpy as np
 
from pandas._libs import lib
from pandas._libs.arrays import NDArrayBacked
from pandas._typing import (
    ArrayLike,
    AxisInt,
    Dtype,
    F,
    PositionalIndexer2D,
    PositionalIndexerTuple,
    ScalarIndexer,
    SequenceIndexer,
    Shape,
    TakeIndexer,
    npt,
    type_t,
)
from pandas.errors import AbstractMethodError
from pandas.util._decorators import doc
from pandas.util._validators import (
    validate_bool_kwarg,
    validate_fillna_kwargs,
    validate_insert_loc,
)
 
from pandas.core.dtypes.common import (
    is_dtype_equal,
    pandas_dtype,
)
from pandas.core.dtypes.dtypes import (
    DatetimeTZDtype,
    ExtensionDtype,
    PeriodDtype,
)
from pandas.core.dtypes.missing import array_equivalent
 
from pandas.core import missing
from pandas.core.algorithms import (
    take,
    unique,
    value_counts,
)
from pandas.core.array_algos.quantile import quantile_with_mask
from pandas.core.array_algos.transforms import shift
from pandas.core.arrays.base import ExtensionArray
from pandas.core.construction import extract_array
from pandas.core.indexers import check_array_indexer
from pandas.core.sorting import nargminmax
 
NDArrayBackedExtensionArrayT = TypeVar(
    "NDArrayBackedExtensionArrayT", bound="NDArrayBackedExtensionArray"
)
 
if TYPE_CHECKING:
    from pandas._typing import (
        NumpySorter,
        NumpyValueArrayLike,
    )
 
    from pandas import Series
 
 
def ravel_compat(meth: F) -> F:
    """
    Decorator to ravel a 2D array before passing it to a cython operation,
    then reshape the result to our own shape.
    """
 
    @wraps(meth)
    def method(self, *args, **kwargs):
        if self.ndim == 1:
            return meth(self, *args, **kwargs)
 
        flags = self._ndarray.flags
        flat = self.ravel("K")
        result = meth(flat, *args, **kwargs)
        order = "F" if flags.f_contiguous else "C"
        return result.reshape(self.shape, order=order)
 
    return cast(F, method)
 
 
class NDArrayBackedExtensionArray(NDArrayBacked, ExtensionArray):
    """
    ExtensionArray that is backed by a single NumPy ndarray.
    """
 
    _ndarray: np.ndarray
 
    # scalar used to denote NA value inside our self._ndarray, e.g. -1
    #  for Categorical, iNaT for Period. Outside of object dtype,
    #  self.isna() should be exactly locations in self._ndarray with
    #  _internal_fill_value.
    _internal_fill_value: Any
 
    def _box_func(self, x):
        """
        Wrap numpy type in our dtype.type if necessary.
        """
        return x
 
    def _validate_scalar(self, value):
        # used by NDArrayBackedExtensionIndex.insert
        raise AbstractMethodError(self)
 
    # ------------------------------------------------------------------------
 
    def view(self, dtype: Dtype | None = None) -> ArrayLike:
        # We handle datetime64, datetime64tz, timedelta64, and period
        #  dtypes here. Everything else we pass through to the underlying
        #  ndarray.
        if dtype is None or dtype is self.dtype:
            return self._from_backing_data(self._ndarray)
 
        if isinstance(dtype, type):
            # we sometimes pass non-dtype objects, e.g np.ndarray;
            #  pass those through to the underlying ndarray
            return self._ndarray.view(dtype)
 
        dtype = pandas_dtype(dtype)
        arr = self._ndarray
 
        if isinstance(dtype, (PeriodDtype, DatetimeTZDtype)):
            cls = dtype.construct_array_type()
            return cls(arr.view("i8"), dtype=dtype)
        elif dtype == "M8[ns]":
            from pandas.core.arrays import DatetimeArray
 
            return DatetimeArray(arr.view("i8"), dtype=dtype)
        elif dtype == "m8[ns]":
            from pandas.core.arrays import TimedeltaArray
 
            return TimedeltaArray(arr.view("i8"), dtype=dtype)
 
        # error: Argument "dtype" to "view" of "_ArrayOrScalarCommon" has incompatible
        # type "Union[ExtensionDtype, dtype[Any]]"; expected "Union[dtype[Any], None,
        # type, _SupportsDType, str, Union[Tuple[Any, int], Tuple[Any, Union[int,
        # Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, Any]]]"
        return arr.view(dtype=dtype)  # type: ignore[arg-type]
 
    def take(
        self: NDArrayBackedExtensionArrayT,
        indices: TakeIndexer,
        *,
        allow_fill: bool = False,
        fill_value: Any = None,
        axis: AxisInt = 0,
    ) -> NDArrayBackedExtensionArrayT:
        if allow_fill:
            fill_value = self._validate_scalar(fill_value)
 
        new_data = take(
            self._ndarray,
            indices,
            allow_fill=allow_fill,
            fill_value=fill_value,
            axis=axis,
        )
        return self._from_backing_data(new_data)
 
    # ------------------------------------------------------------------------
 
    def equals(self, other) -> bool:
        if type(self) is not type(other):
            return False
        if not is_dtype_equal(self.dtype, other.dtype):
            return False
        return bool(array_equivalent(self._ndarray, other._ndarray))
 
    @classmethod
    def _from_factorized(cls, values, original):
        assert values.dtype == original._ndarray.dtype
        return original._from_backing_data(values)
 
    def _values_for_argsort(self) -> np.ndarray:
        return self._ndarray
 
    def _values_for_factorize(self):
        return self._ndarray, self._internal_fill_value
 
    # Signature of "argmin" incompatible with supertype "ExtensionArray"
    def argmin(self, axis: AxisInt = 0, skipna: bool = True):  # type: ignore[override]
        # override base class by adding axis keyword
        validate_bool_kwarg(skipna, "skipna")
        if not skipna and self._hasna:
            raise NotImplementedError
        return nargminmax(self, "argmin", axis=axis)
 
    # Signature of "argmax" incompatible with supertype "ExtensionArray"
    def argmax(self, axis: AxisInt = 0, skipna: bool = True):  # type: ignore[override]
        # override base class by adding axis keyword
        validate_bool_kwarg(skipna, "skipna")
        if not skipna and self._hasna:
            raise NotImplementedError
        return nargminmax(self, "argmax", axis=axis)
 
    def unique(self: NDArrayBackedExtensionArrayT) -> NDArrayBackedExtensionArrayT:
        new_data = unique(self._ndarray)
        return self._from_backing_data(new_data)
 
    @classmethod
    @doc(ExtensionArray._concat_same_type)
    def _concat_same_type(
        cls: type[NDArrayBackedExtensionArrayT],
        to_concat: Sequence[NDArrayBackedExtensionArrayT],
        axis: AxisInt = 0,
    ) -> NDArrayBackedExtensionArrayT:
        dtypes = {str(x.dtype) for x in to_concat}
        if len(dtypes) != 1:
            raise ValueError("to_concat must have the same dtype (tz)", dtypes)
 
        new_values = [x._ndarray for x in to_concat]
        new_arr = np.concatenate(new_values, axis=axis)
        return to_concat[0]._from_backing_data(new_arr)
 
    @doc(ExtensionArray.searchsorted)
    def searchsorted(
        self,
        value: NumpyValueArrayLike | ExtensionArray,
        side: Literal["left", "right"] = "left",
        sorter: NumpySorter = None,
    ) -> npt.NDArray[np.intp] | np.intp:
        npvalue = self._validate_setitem_value(value)
        return self._ndarray.searchsorted(npvalue, side=side, sorter=sorter)
 
    @doc(ExtensionArray.shift)
    def shift(self, periods: int = 1, fill_value=None, axis: AxisInt = 0):
        fill_value = self._validate_scalar(fill_value)
        new_values = shift(self._ndarray, periods, axis, fill_value)
 
        return self._from_backing_data(new_values)
 
    def __setitem__(self, key, value) -> None:
        key = check_array_indexer(self, key)
        value = self._validate_setitem_value(value)
        self._ndarray[key] = value
 
    def _validate_setitem_value(self, value):
        return value
 
    @overload
    def __getitem__(self, key: ScalarIndexer) -> Any:
        ...
 
    @overload
    def __getitem__(
        self: NDArrayBackedExtensionArrayT,
        key: SequenceIndexer | PositionalIndexerTuple,
    ) -> NDArrayBackedExtensionArrayT:
        ...
 
    def __getitem__(
        self: NDArrayBackedExtensionArrayT,
        key: PositionalIndexer2D,
    ) -> NDArrayBackedExtensionArrayT | Any:
        if lib.is_integer(key):
            # fast-path
            result = self._ndarray[key]
            if self.ndim == 1:
                return self._box_func(result)
            return self._from_backing_data(result)
 
        # error: Incompatible types in assignment (expression has type "ExtensionArray",
        # variable has type "Union[int, slice, ndarray]")
        key = extract_array(key, extract_numpy=True)  # type: ignore[assignment]
        key = check_array_indexer(self, key)
        result = self._ndarray[key]
        if lib.is_scalar(result):
            return self._box_func(result)
 
        result = self._from_backing_data(result)
        return result
 
    def _fill_mask_inplace(
        self, method: str, limit, mask: npt.NDArray[np.bool_]
    ) -> None:
        # (for now) when self.ndim == 2, we assume axis=0
        func = missing.get_fill_func(method, ndim=self.ndim)
        func(self._ndarray.T, limit=limit, mask=mask.T)
 
    @doc(ExtensionArray.fillna)
    def fillna(
        self: NDArrayBackedExtensionArrayT, value=None, method=None, limit=None
    ) -> NDArrayBackedExtensionArrayT:
        value, method = validate_fillna_kwargs(
            value, method, validate_scalar_dict_value=False
        )
 
        mask = self.isna()
        # error: Argument 2 to "check_value_size" has incompatible type
        # "ExtensionArray"; expected "ndarray"
        value = missing.check_value_size(
            value, mask, len(self)  # type: ignore[arg-type]
        )
 
        if mask.any():
            if method is not None:
                # TODO: check value is None
                # (for now) when self.ndim == 2, we assume axis=0
                func = missing.get_fill_func(method, ndim=self.ndim)
                npvalues = self._ndarray.T.copy()
                func(npvalues, limit=limit, mask=mask.T)
                npvalues = npvalues.T
 
                # TODO: PandasArray didn't used to copy, need tests for this
                new_values = self._from_backing_data(npvalues)
            else:
                # fill with value
                new_values = self.copy()
                new_values[mask] = value
        else:
            # We validate the fill_value even if there is nothing to fill
            if value is not None:
                self._validate_setitem_value(value)
 
            new_values = self.copy()
        return new_values
 
    # ------------------------------------------------------------------------
    # Reductions
 
    def _wrap_reduction_result(self, axis: AxisInt | None, result):
        if axis is None or self.ndim == 1:
            return self._box_func(result)
        return self._from_backing_data(result)
 
    # ------------------------------------------------------------------------
    # __array_function__ methods
 
    def _putmask(self, mask: npt.NDArray[np.bool_], value) -> None:
        """
        Analogue to np.putmask(self, mask, value)
 
        Parameters
        ----------
        mask : np.ndarray[bool]
        value : scalar or listlike
 
        Raises
        ------
        TypeError
            If value cannot be cast to self.dtype.
        """
        value = self._validate_setitem_value(value)
 
        np.putmask(self._ndarray, mask, value)
 
    def _where(
        self: NDArrayBackedExtensionArrayT, mask: npt.NDArray[np.bool_], value
    ) -> NDArrayBackedExtensionArrayT:
        """
        Analogue to np.where(mask, self, value)
 
        Parameters
        ----------
        mask : np.ndarray[bool]
        value : scalar or listlike
 
        Raises
        ------
        TypeError
            If value cannot be cast to self.dtype.
        """
        value = self._validate_setitem_value(value)
 
        res_values = np.where(mask, self._ndarray, value)
        return self._from_backing_data(res_values)
 
    # ------------------------------------------------------------------------
    # Index compat methods
 
    def insert(
        self: NDArrayBackedExtensionArrayT, loc: int, item
    ) -> NDArrayBackedExtensionArrayT:
        """
        Make new ExtensionArray inserting new item at location. Follows
        Python list.append semantics for negative values.
 
        Parameters
        ----------
        loc : int
        item : object
 
        Returns
        -------
        type(self)
        """
        loc = validate_insert_loc(loc, len(self))
 
        code = self._validate_scalar(item)
 
        new_vals = np.concatenate(
            (
                self._ndarray[:loc],
                np.asarray([code], dtype=self._ndarray.dtype),
                self._ndarray[loc:],
            )
        )
        return self._from_backing_data(new_vals)
 
    # ------------------------------------------------------------------------
    # Additional array methods
    #  These are not part of the EA API, but we implement them because
    #  pandas assumes they're there.
 
    def value_counts(self, dropna: bool = True) -> Series:
        """
        Return a Series containing counts of unique values.
 
        Parameters
        ----------
        dropna : bool, default True
            Don't include counts of NA values.
 
        Returns
        -------
        Series
        """
        if self.ndim != 1:
            raise NotImplementedError
 
        from pandas import (
            Index,
            Series,
        )
 
        if dropna:
            # error: Unsupported operand type for ~ ("ExtensionArray")
            values = self[~self.isna()]._ndarray  # type: ignore[operator]
        else:
            values = self._ndarray
 
        result = value_counts(values, sort=False, dropna=dropna)
 
        index_arr = self._from_backing_data(np.asarray(result.index._data))
        index = Index(index_arr, name=result.index.name)
        return Series(result._values, index=index, name=result.name, copy=False)
 
    def _quantile(
        self: NDArrayBackedExtensionArrayT,
        qs: npt.NDArray[np.float64],
        interpolation: str,
    ) -> NDArrayBackedExtensionArrayT:
        # TODO: disable for Categorical if not ordered?
 
        mask = np.asarray(self.isna())
        arr = self._ndarray
        fill_value = self._internal_fill_value
 
        res_values = quantile_with_mask(arr, mask, fill_value, qs, interpolation)
 
        res_values = self._cast_quantile_result(res_values)
        return self._from_backing_data(res_values)
 
    # TODO: see if we can share this with other dispatch-wrapping methods
    def _cast_quantile_result(self, res_values: np.ndarray) -> np.ndarray:
        """
        Cast the result of quantile_with_mask to an appropriate dtype
        to pass to _from_backing_data in _quantile.
        """
        return res_values
 
    # ------------------------------------------------------------------------
    # numpy-like methods
 
    @classmethod
    def _empty(
        cls: type_t[NDArrayBackedExtensionArrayT], shape: Shape, dtype: ExtensionDtype
    ) -> NDArrayBackedExtensionArrayT:
        """
        Analogous to np.empty(shape, dtype=dtype)
 
        Parameters
        ----------
        shape : tuple[int]
        dtype : ExtensionDtype
        """
        # The base implementation uses a naive approach to find the dtype
        #  for the backing ndarray
        arr = cls._from_sequence([], dtype=dtype)
        backing = np.empty(shape, dtype=arr._ndarray.dtype)
        return arr._from_backing_data(backing)