"""
|
datetimelke_accumulations.py is for accumulations of datetimelike extension arrays
|
"""
|
|
from __future__ import annotations
|
|
from typing import Callable
|
|
import numpy as np
|
|
from pandas._libs import iNaT
|
|
from pandas.core.dtypes.missing import isna
|
|
|
def _cum_func(
|
func: Callable,
|
values: np.ndarray,
|
*,
|
skipna: bool = True,
|
):
|
"""
|
Accumulations for 1D datetimelike arrays.
|
|
Parameters
|
----------
|
func : np.cumsum, np.maximum.accumulate, np.minimum.accumulate
|
values : np.ndarray
|
Numpy array with the values (can be of any dtype that support the
|
operation). Values is changed is modified inplace.
|
skipna : bool, default True
|
Whether to skip NA.
|
"""
|
try:
|
fill_value = {
|
np.maximum.accumulate: np.iinfo(np.int64).min,
|
np.cumsum: 0,
|
np.minimum.accumulate: np.iinfo(np.int64).max,
|
}[func]
|
except KeyError:
|
raise ValueError(f"No accumulation for {func} implemented on BaseMaskedArray")
|
|
mask = isna(values)
|
y = values.view("i8")
|
y[mask] = fill_value
|
|
if not skipna:
|
mask = np.maximum.accumulate(mask)
|
|
result = func(y)
|
result[mask] = iNaT
|
|
if values.dtype.kind in ["m", "M"]:
|
return result.view(values.dtype.base)
|
return result
|
|
|
def cumsum(values: np.ndarray, *, skipna: bool = True) -> np.ndarray:
|
return _cum_func(np.cumsum, values, skipna=skipna)
|
|
|
def cummin(values: np.ndarray, *, skipna: bool = True):
|
return _cum_func(np.minimum.accumulate, values, skipna=skipna)
|
|
|
def cummax(values: np.ndarray, *, skipna: bool = True):
|
return _cum_func(np.maximum.accumulate, values, skipna=skipna)
|