import pytest
|
from pytest import param
|
from numpy.testing import IS_WASM
|
import numpy as np
|
|
|
def values_and_dtypes():
|
"""
|
Generate value+dtype pairs that generate floating point errors during
|
casts. The invalid casts to integers will generate "invalid" value
|
warnings, the float casts all generate "overflow".
|
|
(The Python int/float paths don't need to get tested in all the same
|
situations, but it does not hurt.)
|
"""
|
# Casting to float16:
|
yield param(70000, "float16", id="int-to-f2")
|
yield param("70000", "float16", id="str-to-f2")
|
yield param(70000.0, "float16", id="float-to-f2")
|
yield param(np.longdouble(70000.), "float16", id="longdouble-to-f2")
|
yield param(np.float64(70000.), "float16", id="double-to-f2")
|
yield param(np.float32(70000.), "float16", id="float-to-f2")
|
# Casting to float32:
|
yield param(10**100, "float32", id="int-to-f4")
|
yield param(1e100, "float32", id="float-to-f2")
|
yield param(np.longdouble(1e300), "float32", id="longdouble-to-f2")
|
yield param(np.float64(1e300), "float32", id="double-to-f2")
|
# Casting to float64:
|
# If longdouble is double-double, its max can be rounded down to the double
|
# max. So we correct the double spacing (a bit weird, admittedly):
|
max_ld = np.finfo(np.longdouble).max
|
spacing = np.spacing(np.nextafter(np.finfo("f8").max, 0))
|
if max_ld - spacing > np.finfo("f8").max:
|
yield param(np.finfo(np.longdouble).max, "float64",
|
id="longdouble-to-f8")
|
|
# Cast to complex32:
|
yield param(2e300, "complex64", id="float-to-c8")
|
yield param(2e300+0j, "complex64", id="complex-to-c8")
|
yield param(2e300j, "complex64", id="complex-to-c8")
|
yield param(np.longdouble(2e300), "complex64", id="longdouble-to-c8")
|
|
# Invalid float to integer casts:
|
with np.errstate(over="ignore"):
|
for to_dt in np.typecodes["AllInteger"]:
|
for value in [np.inf, np.nan]:
|
for from_dt in np.typecodes["AllFloat"]:
|
from_dt = np.dtype(from_dt)
|
from_val = from_dt.type(value)
|
|
yield param(from_val, to_dt, id=f"{from_val}-to-{to_dt}")
|
|
|
def check_operations(dtype, value):
|
"""
|
There are many dedicated paths in NumPy which cast and should check for
|
floating point errors which occurred during those casts.
|
"""
|
if dtype.kind != 'i':
|
# These assignments use the stricter setitem logic:
|
def assignment():
|
arr = np.empty(3, dtype=dtype)
|
arr[0] = value
|
|
yield assignment
|
|
def fill():
|
arr = np.empty(3, dtype=dtype)
|
arr.fill(value)
|
|
yield fill
|
|
def copyto_scalar():
|
arr = np.empty(3, dtype=dtype)
|
np.copyto(arr, value, casting="unsafe")
|
|
yield copyto_scalar
|
|
def copyto():
|
arr = np.empty(3, dtype=dtype)
|
np.copyto(arr, np.array([value, value, value]), casting="unsafe")
|
|
yield copyto
|
|
def copyto_scalar_masked():
|
arr = np.empty(3, dtype=dtype)
|
np.copyto(arr, value, casting="unsafe",
|
where=[True, False, True])
|
|
yield copyto_scalar_masked
|
|
def copyto_masked():
|
arr = np.empty(3, dtype=dtype)
|
np.copyto(arr, np.array([value, value, value]), casting="unsafe",
|
where=[True, False, True])
|
|
yield copyto_masked
|
|
def direct_cast():
|
np.array([value, value, value]).astype(dtype)
|
|
yield direct_cast
|
|
def direct_cast_nd_strided():
|
arr = np.full((5, 5, 5), fill_value=value)[:, ::2, :]
|
arr.astype(dtype)
|
|
yield direct_cast_nd_strided
|
|
def boolean_array_assignment():
|
arr = np.empty(3, dtype=dtype)
|
arr[[True, False, True]] = np.array([value, value])
|
|
yield boolean_array_assignment
|
|
def integer_array_assignment():
|
arr = np.empty(3, dtype=dtype)
|
values = np.array([value, value])
|
|
arr[[0, 1]] = values
|
|
yield integer_array_assignment
|
|
def integer_array_assignment_with_subspace():
|
arr = np.empty((5, 3), dtype=dtype)
|
values = np.array([value, value, value])
|
|
arr[[0, 2]] = values
|
|
yield integer_array_assignment_with_subspace
|
|
def flat_assignment():
|
arr = np.empty((3,), dtype=dtype)
|
values = np.array([value, value, value])
|
arr.flat[:] = values
|
|
yield flat_assignment
|
|
@pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
|
@pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
|
@pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
|
def test_floatingpoint_errors_casting(dtype, value):
|
dtype = np.dtype(dtype)
|
for operation in check_operations(dtype, value):
|
dtype = np.dtype(dtype)
|
|
match = "invalid" if dtype.kind in 'iu' else "overflow"
|
with pytest.warns(RuntimeWarning, match=match):
|
operation()
|
|
with np.errstate(all="raise"):
|
with pytest.raises(FloatingPointError, match=match):
|
operation()
|